Marine Biology

, Volume 99, Issue 1, pp 21–30 | Cite as

The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role

  • D. J. S. Montagnes
  • D. H. Lynn
  • J. C. Roff
  • W. D. Taylor
Article

Abstract

Ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine were collected from May 1985 to August 1986 in sampling bottles, fixed in Bouin's solution, and quantitatively protargol stained. Cell abundance and biomass were separated into four size classes. Large species were prevalent in the spring while smaller species dominated in the summer. Ciliate abundance ranged from 0.35 to 6×106 m-3 annually while biomass ranged from 2.7 to 240 J m-3. Production, estimated using a multiple regression equation which incorporated ambient temperature and cell volume, ranged from 2.5 to 105 J m-3d-1. A model was constructed to determine the relative importance of ciliates in the planktonic food web. Blooms could provide a brief but significant transfer of energy to upper trophic levels. However, at best, ciliates may contribute 12% to the copepod ration and 3% of their available food.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Admiraal, W., Venekamp, L. A. H. (1986). Significance of tintinnid grazing during blooms ofPhaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Netherlands J. Sea Res. 20: 61–66Google Scholar
  2. Aelion, C. M., Chisholm, S. W. (1985). Effect of temperature on growth and ingestion rates ofFavella sp. J. Plank. Res. 7: 821–830Google Scholar
  3. Azam, F., Fenchel, T., Field, F. G., Gray, J. S., Meyer-Reil, L. A., Thingstad, F. (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263Google Scholar
  4. Banse, K. (1982). Cell volume, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol. Oceanogr. 27: 1059–1071Google Scholar
  5. Brownlee, D. C. (1982). Measuring the secondary production of marine planktonic tintinnine ciliates. Ph. D. dissertation, University of Maryland, MarylandGoogle Scholar
  6. Bumpus, D. F. (1976). Review of the physical oceanography of Georges Bank. Int. Comm. Northwest Atl. Fish. Res. Bull. 12: 119–134Google Scholar
  7. Birkill, P. (1982). Ciliates and other microplankton components of a nearshore food web: Standing stock and production processes. Ann. Inst. oceanogr. (Paris) 58: 335–350Google Scholar
  8. Burney, C. M. (1986). Bacterial utilization of totalin situ dissolved carbohydrate in offshore waters. Limnol. Oceanogr. 31: 427–431Google Scholar
  9. Capriulo, G. M., Carpenter, E. J. (1980). Grazing by 35 to 202 μm microzooplankton in Long Island Sound. Mar. Biol. 56: 319–326Google Scholar
  10. Capriulo, G. M., Ninivaggi, D. V. (1982). A comparison of the feeding activities of field collected tintinnids and copepods fed identical natural particle assemblages. Ann. Inst. oceanogr. (Paris) 58: 325–334Google Scholar
  11. Cohen, E. B., Grosselein, M. D., Sissenwine, M. P., Steimle, F., Right W. R. (1982). Energy budget of Georges Bank. In: Mercer, M. C. (ed.) Multispecies approaches to fisheries management advice. Can. Spec. Publ. Fish. Aquat. Sci. 59: 95–107Google Scholar
  12. Crisp, D. J. (1975). Secondary productivity in the sea. In: Reichle, D. E., Franklin, J. F., Goodal, D. W. (eds.) Productivity of world ecosystems. National Academy of Science, Washington, D.C., p. 71–90Google Scholar
  13. Dagg, M. J., Turner, J. T. (1982). The impact of copepod grazing on the phytoplankton of Georges Bank and the New York Bight. Can. J. Fish. Aquat. Sci. 39: 979–990Google Scholar
  14. Davis, P. G., Caron, D. A., Johnson, P. W., Sieburth, J. McN. (1985). Phototrophic and apochlorotic components of picoplankton and nanoplankton in the North Atlantic: geographic, vertical, seasonal and diel distribution. Mar. Ecol. Prog. Ser. 21: 15–26Google Scholar
  15. Douglas, D. J. (1984). Microautoradiography-based enumeration of photosynthetic picoplankton with estimates of carbon-specific growth rates. Mar. Ecol. Prog. Ser. 14: 223–228Google Scholar
  16. Ducklow, W. D. (1983). Production and fate of bacteria in the oceans. Bio Sci. 33: 494–501Google Scholar
  17. Ducklow, W. D., Prudie, D. P., Williams, P. J. LeB., Davies, J. M. (1986). Bacterioplankton: A sink for carbon in a coastal marine plankton community. Science N. Y. 232: 865–867Google Scholar
  18. Emerson, C. W. (1986). Pelagic-benthic energy coupling in the lower Bay of Fundy. M. Sc. dissertation. University of Guelph, Guelph, OntarioGoogle Scholar
  19. Fauré-Fremiet, E. (1924). Contribution à la connaissance des infusoires planktoniques. Bull. Biol. Fr. Belg., Suppl. No. 6Google Scholar
  20. Fenchel, T. (1968). The ecology of marine microbenthos. III The reproductive potential of ciliates. Ophelia 5: 123–136Google Scholar
  21. Fenchel, T., Finlay, B. J. (1983). Respiration in heterotrophic, free-living protozoa. Microb. Ecol. 9: 99–122Google Scholar
  22. Finlay, B. J. (1978). Community production and respiration by ciliated protozoa in the benthos of a small eutrophic loch. Fresh-water Biol. 8: 327–341Google Scholar
  23. Gifford, D. J. (1985). Laboratory culture of marine planktonic oligotrichs (Ciliophora, Oligotrichida). Mar. Ecol. Prog. Ser. 23: 257–267Google Scholar
  24. Grice, G. D., Harris, R. P., Reeve, M. R., Heinbokel, J. F., Davis, C. D. (1980). Large-scale enclosed water-column ecosystems. J. mar. biol. Ass. U. K. 60: 401–411Google Scholar
  25. Hargrave, B. T., Harding, G. C., Drinkwater, K. F., Lambert, T. C., Harrison, W. G. (1985). Dynamics of the pelagic food web in St. Georges Bay, southern Gulf of St. Lawrence. Mar. Ecol. Prog. Ser. 20: 221–240Google Scholar
  26. Heinbokel, J. F. (1982). Growth, reproduction and life cycles in marine planktonic protozoa. Ann. Inst. oceanogr. (Paris) 58: 213–222Google Scholar
  27. Johnson, P. W., Seiburth, J. McN. (1982).In situ morphology and occurrence of eucaryotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J. Phycol. 18: 318–327Google Scholar
  28. Johnson, P. W., Xu, H., Seiburth, J. McN. (1982). The utilization of chroococcoid cyanobacteria by marine protozooplankters but not by calanoid copepods. Ann. Inst. oceanogr. (Paris) 58: 297–308Google Scholar
  29. Joint, I. R., Pomroy, A. J. (1983). Production of picoplankton and small nanoplankton in the Celtic Sea. Mar. Biol. 77: 19–27Google Scholar
  30. Joiris, C., Billen, G., Lancelot, C., Daro, M. H., Mommaerts, J. P., Bertels, A., Bossicart, M., Nijs, J., Hecq, J. H. (1982). A budget of carbon cycling in the Belgian Coastal zone: relative roles of zooplankton, bacteria and benthos in utilization of primary production. Neth. J. Sea Res. 16: 260–275Google Scholar
  31. Jones, R. (1984). Some observations on energy transfer through the North Sea and Georges Bank food webs. Rapp. P.-v. Reun. Cons. int. Explor. Mer. 183: 204–217Google Scholar
  32. Jonsson, P. R. (1987). Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina). Mar. Ecol. Prog. Ser. 33: 265–277Google Scholar
  33. Kahl, A., 1930–1935. Urtiere oder Protozoa, I: Wimpertiere oder Ciliata (Infusoria), eine Bearbeitung der freilebenden und ectocommensalen Infusorien der Erde, unter Ausschluß der marinen Tintinnidae. In: Dahl, F. (ed.) Die Tierwelt Deutschlands, Parts 18 (year 1930), 21 (1931), 25 (1932), 30 (1935), G. Fischer, Jena, pp. 1–886Google Scholar
  34. Lancelot, C., Billen, G. (1984). Activity of heterotrophic bacteria and its coupling to primary production during the spring phytoplankton bloom in the southern bight of the North Sea. Limnol. Oceanogr. 29: 721–730Google Scholar
  35. Landry, M. R., Hassett, R. P. (1982). Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67: 283–288Google Scholar
  36. Laybourn, J. E. M., Finlay, B. J. (1976). Respiration energy losses related to cell weight and temperature in ciliated protozoa. Oecologia 24: 349–355Google Scholar
  37. Lee, J. J., Small, E. B., Lynn, D. H., Bovee, E. C. (1985). Some techniques for collecting, cultivating and observing protozoa. In: Lee, J. J., Hutner, S. H., Bovee, E. C. (eds.) An Illustrated Guide to the Protozoa. Soc. Protozool. Special Publ. Allen Press, Lawrence, Kansas, p. 1–7Google Scholar
  38. Leegaard, C. (1915). Untersuchungen über einige Planktonciliaten des Meeres. Nyt. Mag. f. Naturv. 53: 1–37Google Scholar
  39. Leegaard, C. (1920). Microplankton from Finnish waters during the month of May 1912. Acta Soc. Sci. Fenn. Ser. B. 48: 1–48Google Scholar
  40. Maeda, M. (1986). An illustrated guide to the species of the families Halteriidae and Strobilidiidae (Oligotrichida, Ciliophora), free swimming protozoa common in the aquatic environment. Bull. Ocean Res. Inst. Univ. Tokyo 21: 1–67Google Scholar
  41. Maeda, M., Carey, P. G. (1985). An illustrated guide to the family Strombidiidae (Oligotrichida, Ciliophora), free swimming protozoa common in the aquatic environment. Bull. Ocean Res. Inst. Univ. Tokyo 19: 1–68Google Scholar
  42. Malone, T. C., Hopkins, T. S., Falkowski, P. G., Whitledge, T. E. (1983). Production and transport of phytoplankton over the continental shelf of the New York Bight. Cont. Shelf Res. 1: 305–337Google Scholar
  43. Mamaeva, N. V. (1983). Abundance and biomass of infusoria in the Bering Sea. Hydrobiologia 269: 174–175Google Scholar
  44. Marshall, H. G. (1984). Phytoplankton distribution along the eastern coast of the USA. Part V. Seasonal density and cell volume patterns for the northeastern continental shelf. J. Plankton Res. 6: 169–193Google Scholar
  45. Marshall, S. M. (1969). Protozoa order: Tintinnida. Cons. int. Explor. Mer. Zooplankton Sheet 117–127Google Scholar
  46. Middlebrook, K. H. (1985). Annual production of tintinnid ciliates and the copepodsAcartia hudsonica andEurythemora herdmani in Passamaquoddy Bay, New Brunswick. M. Sc. dissertation, University of Guelph, Guelph, OntarioGoogle Scholar
  47. Middlebrook, K. H., Emerson, C. W., Roff, J. C., Lynn, D. H. (1987). Distribution and abundance of tintinnids in the Quoddy region of the Bay of Fundy. Can. J. Zool. 65: 594–601Google Scholar
  48. Middlebrook, K. H., Roff, J. C. (1986). Comparison of methods for estimating annual productivity of the copepodsAcartia hudsonica andEurytemora herdmani in Passamquoddy Bay, New Brunswick, Canada. J. Fish. Aquat. Sci. 43: 656–664Google Scholar
  49. Mills, E. L., Fournier, R. O. (1979). Fish production and the marine ecosystem of the Scotian Shelf, eastern Canada. Mar. Biol. 54: 101–108Google Scholar
  50. Montagnes, D. J. S., Lynn, D. H. (1987). A quantitative protargol stain (QPS) for ciliates: method description and test of its quantitative nature. Mar. Microb. Food Webs 2: 83–93Google Scholar
  51. Newell, R. C., Linley, E. A. S. (1984). Significance of microheterotrophs in the decomposition of phytoplankton: Estimates of carbon and nitrogen flow based on the biomass of plankton communities. Mar. Ecol. Prog. Ser. 16: 105–119Google Scholar
  52. Nival, P., Nival, S. (1976). Particle retention of an herbivorous copepod,Acartia clausi (adult and copepodite stages): Effects on grazing. Limnol. Oceanogr. 21: 24–38Google Scholar
  53. O'Reilly, J. E., Bush, D. A. (1984). Phytoplankton primary production on the northwestern Atlantic shelf. Rapp. P.-v. Reun. Cons. int. Explor. Mer 183: 255–268Google Scholar
  54. Paranjape, M. A., Conover, R. J., Harding, G. C., Prouse, N. J. (1985). Micro- and macrozooplankton on the Scotian Shelf in the prespring bloom period: A comparison of their potential resource utilization. Can. J. Fish. Aquat. Sci. 42: 1484–1492Google Scholar
  55. Parsons, T. R., Takahashi, M. (1979). Biological oceanographic processes. 2nd ed., Pergamon Press, TorontoGoogle Scholar
  56. Platt, T. (1971). The annual production by phytoplankton in St. Margaret's Bay, Nova Scotia. J. Cons. int. Explor. Mer 33: 325–333Google Scholar
  57. Porter, K. G. (1984). Natural bacteria as food resources for zooplankton. In: Klug, M. J., Reddy, C. A. (eds.) Current perspectives in microbial ecology. Am. Soc. Microbiol. p. 340–345Google Scholar
  58. Porter, K. G., Sherr, E. B., Sherr, B. F., Pace, M. L., Sanders, R. W. (1985). Protozoa in planktonic food webs. J. Protozool. 32: 409–415Google Scholar
  59. Rassoulzadegan, F. (1982). Dependence of grazing rate, gross growth efficiency, and food size range on temperature in a pelagic oligotrichous ciliateLohmanniella spiralis Leeg., fed naturally occurring particulate matter. Ann. Inst. oceanogr. (Paris) 58: 177–184Google Scholar
  60. Rassoulzadegan, F., Sheldon, R. W. (1986). Predator-prey interactions of nanoplankton and bacteria in an oligotrophic marine environment. Limnol. Oceanogr. 31: 1010–1021Google Scholar
  61. Reid, P. C. (1982). Patterns of spatial and temporal variability of marine planktonic protozoa. Ann. Inst. oceanogr. (Paris) 58: 179–190Google Scholar
  62. Revelante, N., Gilmartin, M. (1983). Microzooplankton distribution in the Northern Adriatic Sea with emphasis on the relative abundance of ciliated protozoans. Oceanol. Acta 6: 407–415Google Scholar
  63. Rheinheimer, G. (1984). Bacterial ecology of the North and Baltic Seas. Botanica Marina 27: 277–299Google Scholar
  64. Rivier, A., Brownlee, D. C., Sheldon, R. W., Rassoulzadegan, F. (1985). Growth of microzooplankton: A comparative study of bactivorous zooflagellates and ciliates. Mar. Microb. Food Webs, Paris 1: 51–60Google Scholar
  65. Robertson, J. R. (1983). Predation by estuarine zooplankton on tintinnid ciliates. Est. cstl. shelf Sci. 16: 27–36Google Scholar
  66. Roff, J. C., Tremblay, M. J. (1984). Singular, mass-specific P/B ratios cannot be used to estimate copepod production. Can. J. Fish. Aquat. Sci. 41: 830–833Google Scholar
  67. Sameoto, D. D. (1982). Zooplankton and micronecton abundance in acoustic scattering layers on the Scotian slope. Can. J. Fish. Aquat. Sci. 39: 760–777Google Scholar
  68. Scott, J. M. (1985). The feeding rates and efficiencies of a marine ciliateStrombidium sp., grown under chemostat steady-state conditions. J. exp. mar. Biol. Ecol. 90: 81–95Google Scholar
  69. Sherr, E. B., Sherr, B. F., Fallon, R. D., Newell, S. Y. (1986). Small aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol. Oceanogr. 31: 177–183Google Scholar
  70. Sissenwine, M. P., Cohen, E. B., Grosslein, M. D. (1984). Structure of Georges Bank ecosystem. Rapp. P.-v. Reun. Cons. int. Explor. Mer 183: 243–254Google Scholar
  71. Small, E. B., Lynn, D. H. (1985). Phylum Ciliophora. In: Lee, J. J., Hutner, S. H., Bovee, E. C. (eds.) An illustrated guide to the protozoa, pp 395–575. Soc. Protozool. Special Publ. Allen Press, Laurence, KansasGoogle Scholar
  72. Smetacek, V. (1981). The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63: 1–11Google Scholar
  73. Smetacek, V. (1984). Growth dynamics of a common Baltic protozooplankter: the ciliate genusLohmanniella. Limnologica (Berlin) 15: 371–376Google Scholar
  74. Smetacek, V., Bodungen, B. von, Knoppers, B., Peinert, R., Pollehne, F., Stegmann, P., Zeitzshel, B. (1982). Seasonal stages characterizing the annual cycle of an inshore pelagic system. Rapp. P.-v. Reun. Cons. int. Explor. Mer. 183: 126–135Google Scholar
  75. Sorokin, Y. I. (1977). The heterotrophic phase of plankton succession in the Japan Sea. Mar. Biol. 41: 107–117Google Scholar
  76. Stoecker, D. K., Evans, G. T. (1985). Effects of protozoan herbivory and carnivory in a microplankton food web. Mar. Ecol. Prog. Ser. 25: 159–167Google Scholar
  77. Stoecker, D. K., Davis, L. H., Provan, A. (1983). Growth ofFavella sp. (Ciliata: Tintinnina) and other microzooplankters in cages incubatedin situ and comparison to growthin vitro. Mar. Biol. 75: 293–302Google Scholar
  78. Stoecker, D. K., Govoni, J. J. (1984). Food selection by larval gulf menhaden (Brevoortia patronus). Mar. Biol. 80: 299–306Google Scholar
  79. Stoecker, D. K., Sanders, N. K. (1985). Differential grazing byAcartia tonsa on a dinoflagellate and a tintinnid. J. Plankton Res. 7: 85–100Google Scholar
  80. Strickler, J. R. (1983). Modes of cell capture in calanoid copepods. Limnol. Oceanogr. 28: 113–116Google Scholar
  81. Takahashi, M., Hoskins, K. D. (1978). Winter condition of marine plankton populations in Saanich Inlet, B. C., Canada. II. Microzooplankton. J. exp. mar. Biol. Ecol. 32: 27–37Google Scholar
  82. Taylor, W. D. (1978). Maximum growth rate and commonness in a community of bactivorous ciliates. Oecologia 36: 263–272Google Scholar
  83. Townsend, D. W., Cucci, T. L., Berman, T. (1984). Subsurface chlorophyll maxima and vertical distribution of zooplankton in the Gulf of Maine. J. Plank. Res. 6: 793–802Google Scholar
  84. Tremblay, M. J., Roff, J. C. (1983). Production estimates for Scotian Shelf copepods based on mass specific P/B ratios. Can. J. Fish. Aquat. Sci. 40: 749–753Google Scholar
  85. Venrick, E. L., Beers, J. R., Heinbokel, J. F. (1977). Possible consequences of containing microplankton for physiological rate measurements. J. exp. mar. Biol. Ecol. 26: 55–76Google Scholar
  86. Verity, P. G. (1984). The physiology and ecology of tintinnids in Narragansett Bay, Rhode Island. Ph. D. dissertation, University of Rhode Island Kingston, Rhode IslandGoogle Scholar
  87. Verity, P. G. (1985). Grazing, respiration, excretion, and growth rates of tintinnids. Limnol. Oceanogr. 30: 1268–1282Google Scholar
  88. Verity, P. G. (1986a). Grazing of phototrophic nanoplankton by microzooplankton in Narragansett Bay. Mar. Ecol. Prog. Ser. 29: 105–115Google Scholar
  89. Verity, P. G. (1986b). Growth rates of natural tintinnid populations in Narragansett Bay. Mar. Ecol. Prog. Ser. 29: 117–126Google Scholar
  90. Williams, P. J. le B. (1981). Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kiel Meeresforsch. Sonderh 5: 1–28Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • D. J. S. Montagnes
    • 1
  • D. H. Lynn
    • 1
  • J. C. Roff
    • 1
  • W. D. Taylor
    • 2
  1. 1.Department of ZoologyUniversity of GuelphGuelphCanada
  2. 2.Department of BiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations