Astrophysics and Space Science

, Volume 139, Issue 2, pp 389–411 | Cite as

Physical constants and evolution of the Universe

  • V. S. Troitskii


A cosmological model is discussed which is based on interpretation of the red shift by decrease of the light speed with time everywhere in the Universe beginning with a certain moment of time in the past. The model is described by a metric in which the light speed depends on time and the radius of the curvature of three-dimensional space remains constant (c-metric). It is shown that this metric leads to the same observed facts and formulas of different characteristics that the metric of standard cosmology does but with essentially different physical interpretation. Such a property is the consequence of conformity of spaces being defined by both metrics. The agreement with the fundamental physics laws is achieved by introducing the evolution of a number of other fundamental constants synchronously with the variation of the light speed. The model considered connected the evolution of the Universe with evolution of physical constants and permits explaining some unclear cosmological phenomena — for example, a high isotropy of the relict background and superluminal speed in quasars.


Isotropy Cosmological Model Physical Interpretation High Isotropy Physical Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Averkov, S. I. and Ostrovskii, L. A.: 1958,Izv. VUZov, Radiofizika 1, No. 4, 46.Google Scholar
  2. Bahcall, J. M. and Schmidt, M.: 1967,Phys. Rev. Letters 19, 1294.Google Scholar
  3. Baum, W. A. and Florentin-Nelson, R.: 1976,Astrophys. J. 209, 319.Google Scholar
  4. Bellert, S.: 1977,Astrophys. Space Sci. 47, 263.Google Scholar
  5. Chechev, V. P. and Kamarovskii, Ya. M.: 1978,Radioactivity and Evolution of the Universe, Nauka, Moscow.Google Scholar
  6. Chernyi, L. T.: 1983,Relativistic Models of Solid Media, Nauka, Moscow.Google Scholar
  7. Dearborn, D. S. and Schramm, D. N.: 1974,Nature 247, 441.Google Scholar
  8. Gamov, G.: 1967,Proc. Nat. Acad Sci. 57, 187.Google Scholar
  9. Landau, L. D. and Lifshitz, E. M.: 1973,The Field Theory, Nauka, Moscow.Google Scholar
  10. Legg, T. H.: 1970,Nature 226, 65.Google Scholar
  11. Mansfield, V. N. and Malin, S.: 1976,Astrophys. J. 209, 335.Google Scholar
  12. Mattig, W.: 1958,Astron. Nachr. 284, 109.Google Scholar
  13. Pochoda, P. and Schwarzschild, M.: 1964,Astrophys. J. 139, 587.Google Scholar
  14. Shapiro, I.: 1982,Astrophysics, Quantum and Relativistic Theory, MIR, Moscow, p. 215.Google Scholar
  15. Shlyakhter, A. I.: 1976,Nature 264, 340.Google Scholar
  16. Solheim, J. E., Barnes, T. G., and Smith, H. J.: 1976,Astrophys. J. 209.Google Scholar
  17. Troitskii, V. S.:Dokl. Akad. Nauk USSR 290.Google Scholar
  18. Tubbs, A. D. and Wolff, A. M.: 1980,Astrophys. J. 236, 105.Google Scholar
  19. Turnere, J. P. and Stein, S. R.: 1976,An Experimental Limit of the Time Variation of the Fine Structure Constants, Atom. Masses.Google Scholar
  20. Van Flandern, T. C.: 1975,Monthly Notices Roy. Astron. Soc. 170, 333.Google Scholar
  21. Vladimirov, Yy. S.: 1982,Reference Systems in the Gravitational Theory, Energoizdat, Moscow.Google Scholar
  22. Will, K. M.: 1983, in M. Hawking (ed.), ‘Gravitational Theory and Experiment’,General Relativistic Theory, MIR, Moscow.Google Scholar
  23. Williams, J. G. and Dicke, R. H. et al. 1976,Phys. Rev. Letters 36, 551.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • V. S. Troitskii
    • 1
  1. 1.Radiophysical Research InstituteGorkyUSSR

Personalised recommendations