Earth, Moon, and Planets

, Volume 66, Issue 2, pp 153–171 | Cite as

Emplacement of a radiating dike swarm in western Vinmara Planitia, Venus: interpretation of the regional stress field orientation and subsurface magmatic configuration

  • Eric B. Grosfils
  • James W. Head


Magellan radar data from western Vinmara Planitia on Venus reveal a system of radiating lineaments extending 450 km from a small central annulus. Spatial variations in lineament density, orientation, and morphology, as well as structural and volcanic correlations, provide strong evidence that formation of the lineaments was related to subsurface dike emplacement. We infer from the observed surface deformation that the dikes were emplaced laterally, at shallow depth, from a large central magma reservoir. This configuration is analogous to that of radiating dike swarms found on Earth. Because dikes inject normal to the least compressive stress direction, swarm plan view geometry will reveal the greatest horizontal compressive stress trajectories. We interpret strongly radial orientations near the swarm center to represent radial stresses linked to pressurization of the magma reservoir. Increasingly non-radial behavior dominating at greater distances is interpreted to reflect a N60E±20° regional maximum horizontal compressive stress. Contrary to previous inferences that a persistent E–W compressive stress dominated throughout, analysis of the arachnoid indicates that a N60E compressive stress must have existed across western Vinmara Planitia during a portion of its deformation. This and the absence of distributed shear within the adjacent deformation belts indicates that the regional maximum horizontal compression orientation has varied over time. Comparison between the regional stress orientations inferred from the arachnoid and several nearby ridge belts illustrates that stress orientations may potentially be useful for determining relative belt ages in areas where the timing of ridge belt formation is difficult to assess by more direct means. This demonstrates one way that identification and analysis of giant radiating dike swarms can provide new information critical for regional stress interpretations on Venus.


Magma Reservoir Stress Orientation Dike Swarm Horizontal Compressive Stress Deformation Belt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, E. M.: 1951,The Dynamics of Faulting and Dyke Formation with Applications to Great Britain, 206 pp., Oliver and Boyd, Edinburgh.Google Scholar
  2. Barsukov, V. L., Basilevsky, A. T., Burba, G. A., Bobinna, N. N., Kryuchkov, V. P., Kuzmin, R. O., Nikolaeva, O. V., Pronin, A. A., Ronca, L. B., Chernaya, I. M., Shashkina, V. P., Garanin, A. P., Kushky, E. R., Markov, M. S., Sukhanov, A. L., Kotelnikov, V. A., Rziga, O. N., Petrov, G. M., Alexandrov, Y. N., Sidorenko, A. I., Bogomolov, A. F., Skrypnik, G. I., Bergman, M. Y., Kudrin, L. V., Bokshtein, I. M., Kronrod, M. A., Chochia, P. A., Tyuflin, Y. S., Kadnichansky, S. A., and Akim E, L.: 1986, ‘The Geology and Geomorphology of the Venus Surface as Revealed by the Radar Images Obtained by Veneras 15 and 16’,Proc. Lunar Planet. Sci. 16, J. Geophys. Res. 91, D378-D398.Google Scholar
  3. Basilevsky, A. T., Pronin, A. A., Ronca, L. B., Kryuchkov, V. P., Sukhanov, A. L., and Markov, M. S.: 1986, ‘Styles of Tectonic Deformations on Venus: Analysis of Venera 15 and 16 Data’,Proc. Lunar Planet. Sci. 16, J. Geophys. Res. 91, D399-D411.Google Scholar
  4. Basilevsky, A. T. and Head, J. W.: ‘Global Stratigraphy of Venus: Analysis of a Random Sample of Thirty-Six Test Areas’,Icarus, in press.Google Scholar
  5. Bindschadler, D. L., Schubert, G., and Kaula, W. M.: 1992, ‘Coldspots and Hotspots: Global Tectonics and Mantle Dynamics of Venus’,J. Geophys. Res. 97, 13495–13532.Google Scholar
  6. Blake, S.: 1981, ‘Volcanism and Dynamics of Open Magma Chambers’,Nature,289, 783–785.Google Scholar
  7. Bruce, P. M. and Huppert, H. E.: 1989, ‘Thermal Control of Basaltic Fissure Eruptions’,Nature 342, 665–667.Google Scholar
  8. Cyr, K. E. and Melosh, H. J.: 1993, ‘Tectonic Patterns and Regional Stresses near Venusian Coronae’,Icarus 102, 175–184.Google Scholar
  9. Delaney, P. T. and Pollard, D. D.: 1981, ‘Deformation of Host Rocks and Flow of Magma during Growth of Minette Dikes and Breccia-Bearing Intrusions near Ship Rock, New Mexico’,U.S. Geol. Surv. Proc. Pap. 1202, 1–61.Google Scholar
  10. Ernst, R. E. and Baragar, W. R. A.: 1992, ‘Evidence from Magnetic Fabric for the Flow Pattern of Magma in the Mackenzie Giant Radiating Dyke Swarm’,Nature 356, 511–5133.Google Scholar
  11. Fahrig, W. F.: 1987, ‘The Tectonic Settings of Continental Mafic Dyke Swarms: Failed Arm and Early Passive Margin’,Geol. Assoc. Can. Spec. Pap. 34, 331–348.Google Scholar
  12. Fahrig, W. F. and West, T. D.: 1986, ‘Diabase Dyke Swarms of the Canadian Shield’,Geological Survey of Canada, Map 1627A.Google Scholar
  13. Frank, S. L. and Head, J. W.: 1990, ‘Ridge Belts on Venus: Morphology and Origin’,Earth, Moon, and Planets 50/51, 421–470.Google Scholar
  14. Gibson, I. L., Madhurendra, N. S., and Fahrig, W. F.: 1987, ‘The Geochemistry of the Mackenzie Dyke Swarm, Canada’,Geol. Assoc. Can. Spec. Pap. 34, 109–121.Google Scholar
  15. Greeley, R., Arvidson, R. E., Elachi, C., Geringer, M. A., Plaut, J. J., Saunders, R. S., Schubert, G., Stofan, E. R., Thouvenot, E. J. P., Wall, S. D., and Weitz, C. M.: 1992, ‘Aeolian Features on Venus: Preliminary Magellan Results’,J. Geophys. Res. 97, 13319–13345.Google Scholar
  16. Greenough, J. D. and Hodych, J. P.: 1990, ‘Evidence for Lateral Magma Injection in the Early Mesozoic Dykes of Eastern North America’, in A. J. Parker, P. C. Rickwood and D. H. Tucker (eds.),Mafic Dykes and Emplacement Mechanisms, A. A. Balkema Publishers, Rotterdam, pp. 35–46.Google Scholar
  17. Grosfils, E. B. and Head, J. W.: 1994, ‘The Global Distribution of Giant Radiating Dike Swarms on Venus: Implications for the Global Stress State’,Geophys. Res. Lett. 21, 701–704.Google Scholar
  18. Halls, H. C.: 1987, ‘Dyke Swarms and Continental Rifting: Some Concluding Remarks’,Geol. Assoc. Can. Spec. Pap. 34, 483–492.Google Scholar
  19. Head, J. W., Crumpler, L. S., Aubele, J. C., Guest, J. E., and Saunders, R. S.: 1992, ‘Venus Volcanism: Classification of Volcanic Features and Structures, Associations and Global Distribution from Magellan Data’,J. Geophys. Res. 97, 13153–13197.Google Scholar
  20. Head, J. W. and Wilson, L.: ‘Magma Reservoirs and Neutral Buoyancy Zones on Venus: Implications for the Formation and Evolution of Volcanic Landforms’,J. Geophys. Res. 97, 3877–3903.Google Scholar
  21. Janes, D. M., Squyres, S. W., Bindschadler, D. L., Baer, G., Schubert, G., Sharpton, V. L., and Stofan, E. R.: 1992, ‘Geophysical Models for the Formation and Evolution of Coronae on Venus’,J. Geophys. Res. 97, 16055–16067.Google Scholar
  22. Marsh, B. D.: 1984, ‘On the Mechanics of Caldera Resurgence’,J. Geophys. Res.,89, 8245–8251.Google Scholar
  23. Mastin, L. G. and Pollard, D. D.: 1988, ‘Surface Deformation and Shallow Dike Intrusion Processes at Inyo Craters, Long Valley, California’,J. Geophys. Res. 93, 13221–13235.Google Scholar
  24. May, P. R.: 1971, ‘Pattern of Triassic-Jurassic Diabase Dykes around the North Atlantic in the Context of Predrift Position of the Continents’,Geol. Soc. Am. Bull. 82, 1285–1292.Google Scholar
  25. McGill, G. E.: 1993, ‘Wrinkle Ridges, Stress Domains, and Kinematics of Venusian Plains’,Geophys. Res. Lett. 20, 2407–2410.Google Scholar
  26. McKenzie, D., McKenzie, J. M., and Saunders, R. S.: 1992, ‘Dyke Emplacement on Venus and on Earth’,J. Geophys. Res. 97, 15977–15990.Google Scholar
  27. Muller, O. H. and Pollard, D. D.: 1977, ‘The Stress State near Spanish Peaks, Colorado, Deterrnined from a Dike Pattern’,Pageoph. 115, 69–86.Google Scholar
  28. Ode, H.: 1957, ‘Mechanical Analysis of the Dike Pattern of the Spanish Peaks Area, Colorado’,Geol. Soc. Am. Bull. 68, 567–576.Google Scholar
  29. Parfitt, E. A. and Head, J. W.: 1993, ‘Buffered and Unbuffered Dike Emplacement on Earth and Venus: Implications for Magma Reservoir Size, Depth, and Rate of Magma Replenishment’,Earth, Moon, and Planets 61, 249–281.Google Scholar
  30. Phinney, W. C., Morrison, D. A., and Maczuga, D. E.: 1988, ‘Anorthosites and Related Megacrystic Units in the Evolution of the Archean Crust’,J. Petrol. 29, 1283–1323.Google Scholar
  31. Pollard, D. D., Delaney, P. T., Duffield, W. A., Endo, E. T., and Okamura, A. T.: 1983, ‘Surface Deformation in Volcanic Rift Zones’,Tectonophysics 94, 541–584.Google Scholar
  32. Pollard, D. D. and Holzhausen, G.: 1979, ‘On the Mechanical Interaction between a Fluid-Filled Fracture and the Earth's Surface’,Tectonophysics 53, 27–57.Google Scholar
  33. Pronin, A. A. and Stofan, E. R.: 1990, ‘Coronae on Venus: Morphology, Classification and Distribution’,Icarus 87, 452–474.Google Scholar
  34. Rubin, A. M.: 1992, ‘Dike-Induced Faulting and Graben Subsidence in Volcanic Rift Zones’,J. Geophys. Res. 97, 1839–1858.Google Scholar
  35. Ryan, M. P., Blevins, J. Y. K., Okamura, A. T., and Koyanagi, R. Y.: 1983, ‘Magma Reservoir Subsidence Mechanics: Theoretical Summary and Application to Kilauea Volcano, Hawaii’,J. Geophys. Res. 88, 4147–4181.Google Scholar
  36. Smith, R. E: 1987, ‘Dyke Emplacement at Spanish Peaks, Colorado’,Geol. Assoc. Can. Spec. Pap. 34, 47–54.Google Scholar
  37. Solomon, S. C., Smrekar, S. E., Bindschadler, D. L., Grimm, R. E., Kaula, W. M., McGill, G. E., Phillips, R. J., Saunders, R. S., Schubert, G., Squyres, S. W., and Stofan, E. R.: 1992, ‘Venus Tectonics: An Overview of Magellan Observations’,J. Geophys. Res. 97, 13199–13225.Google Scholar
  38. Squyres, S. W., Jankowski, D. G.., Simons, M., Solomon, S. C., Hager, B. H., and McGill, G. E., 1992, ‘Plains Tectonism on Venus: The Deformation Belts of Lavinia Planitia’,J. Geophys. Res. 97, 13579–13599.Google Scholar
  39. Stofan, E. R., Bindschadler, D. L., Head, J. W., and Parmentier, E. M.: 1991, ‘Corona Structures on Venus: Models of Origin’,J. Geophys. Res. 96, 20933–20946.Google Scholar
  40. Walker, G. P. L.: 1984, ‘Downsag Calderas, Ring Faults, Caldera Sizes, and Incremental Caldera Growth’,J. Geophys. Res. 89, 8407–8416.Google Scholar
  41. White, R. and McKenzie, D.: 1989. ‘Magmatism at Rift Zones: The Generation of Volcanic Continental Margins and Flood Basalts’,J. Geophys. Res. 94, 7685–7729.Google Scholar
  42. Wilson, L. and Head, J. W.: 1988, ‘Nature of Local Magma Storage Zones and Geometry of Conduit Systems Below Basaltic Eruption Sites: Pu'u 'O'o, Kilauea East Rift, Hawaii, Example’,J. Geophys. Res. 93, 14785–14792.Google Scholar
  43. Zuber, M. T.: 1987, ‘Constraints on the Lithospheric Structure of Venus from Mechanical Models and Tectonic Surface Features’,J. Geophys. Res. 92, E541-E551.Google Scholar

Copyright information

© Kluwer Academic Publisher 1994

Authors and Affiliations

  • Eric B. Grosfils
    • 1
  • James W. Head
    • 1
  1. 1.Department of Geological SciencesBrown UniversityProvidence, RIUSA

Personalised recommendations