Astrophysics and Space Science

, Volume 65, Issue 1, pp 215–240 | Cite as

Interstellar molecule formation in grain mantles: The laboratory analog experiments, results and implications

  • W. Hagen
  • L. J. Allamandola
  • J. M. Greenberg


Laboratory and theoretical studies have been made of the effects of ultraviolet photolysis of interstellar grain mantles which consist of combinations of hydrogen, oxygen, carbon and nitrogen — ‘dirty ice’. It is shown that processes involving photolysis (photoprocessing) of interstellar grains are important during most of their lifetime even including the time they spend in dense clouds. A laboratory designed to simulate the interstellar conditions is described. This is the first time such a laboratory has been able to provide results which may be directly scaled to the astrophysical situations involving interstellar grains and their environment. The evolution of grain analogs is followed by observing the infrared absorption spectra of photolyzed samples of ices deposited at 10 K. The creation and storage of radicals and the production of molecules occur as a result of reactions within the solid. A large number of molecules and radicals observed in the interstellar gas appear in the irradiated ices. Energy released during warm-up is seen from visible luminescence and inferred from vapor pressure enhancement which occurs during warming of photolyzed samples relative to unphotolyzed samples. The evolution of a grain and its role as a source as well as a sink of molecules is pictured as a statistical process within dense clouds. The gradual accretion on and photolysis of an individual grain provides the stored chemical energy the release of which is sporadically triggered by relatively mild events (such as low velocity grain-grain collisions) to produce the impulsive heating needed to eject or evaporate a portion of the grain mantle. An extremely complex and rather refractory substance possessing the infrared signatures of amino groups and carboxylic acid groups and having a maximum mass of 514 amu has been produced at a rate corresponding to a mass conversion rate of interstellar grains of between 2% and 20% in 107 yr. The shape and position of the astronomically observed 3.1 μm band is duplicated in the laboratory and is shown to be a natural consequence of the processing of grain mantles.


Photolysis Dense Cloud Visible Luminescence Mass Conversion Interstellar Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allamandola, L. J., Greenberg, J. M. and Norman, C. A.: 1979,Astron. Astrophys. (in press).Google Scholar
  2. Bash, F.: 1979,Astrophys. J. (in press).Google Scholar
  3. Bass, A. M. and Broida, H. P. (eds.): 1960,Formation and Trapping of Free Radicals, Academic Press, New York.Google Scholar
  4. Buontempo, U.: 1972,Phys. Letters 42A, 17.Google Scholar
  5. Calvert, J. G. and Pitts, J. M. Jr: 1966,Photochemistry. John Wiley and Sons,Google Scholar
  6. Capps, R. W., Gillett, F. C. and Knacke, R. F.: 1978,Astrophys. J. 226, 863.Google Scholar
  7. Carey, F.: 1970,Knickerbocker News, Associated Press, Albany, New York, Dec. 31, 1.Google Scholar
  8. Cohen, M.: 1976,Astrophys. J. 203, 169.Google Scholar
  9. Danielson, E. E., Woolf, N. J. and Gaustad, J. E.: 1965,Astrophys. J. 141, 116.Google Scholar
  10. Donn, B.: 1960 in A. M. Bass and H. P. Broida (eds.),Formation and Trapping of Free Radicals, Chapter 11, Academic Press, New York, p. 347.Google Scholar
  11. Dubost, H.: 1976,Chem. Phys. 12, 139.Google Scholar
  12. Ewing, G. E., Thompson, W. E. and Pimentel, G. C.: 1960,J. Chem. Phys. 32, 927.Google Scholar
  13. Fehsenfeld, F. C., Evenson, K. M. and Broida, H. P.: 1964,National Bureau of Standards Report 8701.Google Scholar
  14. Fehsenfeld, F. C., Evenson, K. M. and Broida, H. P.: 1965,Rev. Scient. Instru. 36, 294.Google Scholar
  15. Field, G. B.: 1978, in T. Gehrels (ed.),Protostars and Planets, Univ. of Arizona Press, Tucson.Google Scholar
  16. Gammon, R. H.: 1978,Chem. Engng. News 56, No. 41, 21.Google Scholar
  17. Gillett, F. C., Jones, T. W., Merrill, K. M. and Stein, W. A.: 1975,Astron. Astrophys. 45, 77.Google Scholar
  18. Greenberg, J. M.: 1963,Ann. Rev. Astron. Astrophys. 15, 267.Google Scholar
  19. Greenberg, J. M.: 1971,Astron. Astrophys. 12, 240.Google Scholar
  20. Greenberg, J. M.: 1973, in M. A. Gordon and L. E. Snyder (eds.)Molecules in the Galactic Environment, John Wiley and Sons, p. 93.Google Scholar
  21. Greenberg, J. M.: 1976,Astrophys. Space Sci. 39, 9.Google Scholar
  22. Greenberg, J. M.: 1978, in A. J. M. McDonnell (ed.),Cosmic Dust, Chapter 4, Wiley, London, p. 187.Google Scholar
  23. Greenberg, J. M.: 1979a,The Moon and Planets 20, 15.Google Scholar
  24. Greenberg, J. M.: 1979b, in B. Westerlund (ed.),Stars and Star Systems, IAU 4th European Regional Meeting in Astronomy, Reidel, Dordrecht, p. 173.Google Scholar
  25. Greenberg, J. M.: 1979c, in W. I. Axford, H. Fechtig, J. Rahe (eds.),ESA Workshop on Cometary Missions, Bamberg, p. 119.Google Scholar
  26. Greenberg, J. M., Yencha, A. J., Corbett, J. W. and Frisch, H. L.: 1972,Mem. Roy. Soc. Sciences de Liège, 6e série, Tome III, 425.Google Scholar
  27. Hallam, H. E.: 1973,Vibrational Spectroscopy of Trapped Species, John Wiley and Sons, New York.Google Scholar
  28. Habing, H. J.: 1968,Bull. Astron. Inst. Ned. 19, 421.Google Scholar
  29. Harris, D. H., Woolf, N. J. and Rieke, G. H.: 1978,Astrophys. J. 226, 829.Google Scholar
  30. Harteck, P. and Oppenheimer, F.: 1932,Z. Phys. Chemie B16, 77.Google Scholar
  31. Harteck, P., Reeves Jr, R. R. and Thompson, B. A.: 1964,Z. Naturforschg. 19a, 2.Google Scholar
  32. Herzberg, G. and Ramsay, D. A. 1955,Proc. Roy. Soc. (Lond.) A233, 34.Google Scholar
  33. Hong, S. S.: 1975,Unified model of interstellar grains, Ph.D. Thesis, State Univ. of New York at Albany.Google Scholar
  34. Hong, S. S. and Greenberg, J. M.: 1978,Astron. Astrophys. 70, 695.Google Scholar
  35. Hunter, C. E. and Donn, B.: 1971,Astrophys. J. 167, 71.Google Scholar
  36. Jackson, J. L.: 1959a,J. Chem. Phys. 31, 154.Google Scholar
  37. Jackson, J. L.: 1959b,J. Chem. Phys. 31, 722.Google Scholar
  38. Johns, J. W. C., Priddle, S. H. and Ramsay, D. A.: 1963,Discussions Faraday Soc. 35, 90.Google Scholar
  39. Lindblad, B.: 1935,Nature 135, 133.Google Scholar
  40. Merrill, K. M., Russell, R. W. and Soifer, B. T.: 1976,Astrophys. J. 207, 763.Google Scholar
  41. Meyer, B.: 1971,Low Temperature Spectroscopy, Elsevier Press, New York.Google Scholar
  42. Miller, S.: 1953,Science 117, 528.Google Scholar
  43. Milligan, D. E. and Jacox, M. E.: 1964,J. Chem. Phys. 41, 3032.Google Scholar
  44. Milligan, D. E. and Jacox, M. E.: 1965,J. Chem. Phys. 43, 4487.Google Scholar
  45. Milligan, D. E. and Jacox, M. E.: 1971,J. Chem. Phys. 54, 927.Google Scholar
  46. Mitchell, G. F., Ginsburg, J. L. and Kuntz, P. J.: 1978,Astrophys. J. Suppl. 38, 39.Google Scholar
  47. Mukai, T., Mukai, S., and Noguchi, K.: 1978,Astrophys. Space Sci. 53, 77.Google Scholar
  48. Nibler, J. W.: 1976, Private communication;see also Lesiecki, M. L.: 1975,Spectroscopic studies of high temperature matrix isolated molecules, Ph.D. Dissertation, Oregon State University.Google Scholar
  49. Norman, C. A. and Silk, J.: 1979,Astrophys. J. (in press).Google Scholar
  50. Okabe, H.: 1963,J. Opt. Soc. Am. 54, 478.Google Scholar
  51. Oort, J. H.: 1974, in J. R. Shakeshaft (ed.),Recent Studies of Bright Galaxies, IAU Symp. No. 58, Reidel, Dordrecht, p. 375.Google Scholar
  52. Pimentel, G. C., Bulanin, M. O. and van Thiel, M.: 1962,J. Chem. Phys. 36, 500.Google Scholar
  53. Pugh, L. A. and Rao, K. N.: 1976, in K. Rao (ed.),Molecular Spectroscopy, Modern Research, Academic Press, New York, Vol. II, p. 165.Google Scholar
  54. Salpeter, E. E.: 1977,Ann. Rev. Astron. Astrophys. 15, 267.Google Scholar
  55. Samson, J. A. R.: 1967,Techniques of Vacuum Ultraviolet Spectroscopy, Wiley, New York, p. 213.Google Scholar
  56. Sandell, G.: 1978,Astron. Astrophys. 69, 85.Google Scholar
  57. Slanger, T. G., Sharpless, R. L., Black, G., Filseth, S. V.: 1974,J. Chem. Phys. 61, 5022.Google Scholar
  58. Snyder, L. E., Buhl, D., Zuckerman, B., and Palmer, P.: 1969,Phys. Rev. Letters 22, 679.Google Scholar
  59. Spitzer, L. Jr.: 1969,Diffuse Matter in Space, Wiley, New York.Google Scholar
  60. ter Haar, D.: 1943,Bull. Ast. Inst. Ned. 10, No. 361, 1.Google Scholar
  61. Thomas, Jr., S. G. and Guillory, W. A.: 1973,J. Phys. Chem. 77, 2469.Google Scholar
  62. Thompson, B. A., Reeves, Jr, R. R. and Harteck, P.: 1965,J. Phys. Chem. 69, 3964.Google Scholar
  63. van de Hulst, H. C.: 1943,Ned. Tijdschr. v. Natuurkunde 10, 251.Google Scholar
  64. van de Hulst, H. C.: 1949,Recherche Astron. Observatoire Utrecht 11, part 2.Google Scholar
  65. van Thiel, M., Becker, E. D. and Pimentel, G. C.: 1957,J. Chem. Phys. 27, 486.Google Scholar
  66. Warneck, P.: 1962,Appl. Optics 1, 721.Google Scholar
  67. Watson, W. D.: 1976,Rev. Mod. Phys. 48, 513.Google Scholar
  68. Witt, A. N. and Johnson, M. W.: 1973,Astrophys. J. 181, 363.Google Scholar
  69. Witt, A. N. and Lillie, C. F.: 1973,Astron. Astrophys. 25, 371.Google Scholar
  70. Zuckerman, B. and Evans, N. J. II: 1974,Astrophys. J. 192, L149.Google Scholar

Copyright information

© D. Reidel Publishing Co 1979

Authors and Affiliations

  • W. Hagen
    • 1
  • L. J. Allamandola
    • 1
  • J. M. Greenberg
    • 1
  1. 1.Laboratory Astrophysics GroupHuygens LaboratoryLeidenNetherlands

Personalised recommendations