Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Structure and evolutionary history of the solar system, IV

  • 63 Accesses

  • 20 Citations

Abstract

In this fourth and last part of our analysis, the first section (14) contains a study of the chemical composition of the planets and satellites. A sharp distinction is made between the large quantity of speculations about the interiors of the bodies and the rather meagerfacts known with a reasonable degree of certainty. It is shown, however, that the latter are sufficient todisprove the old concept of a Laplacian disc of homogeneous chemical composition. There is asystematic variations in the chemical composition of planets (and probably also of satellites) so that heavy elements are more abundant in the outermost and in the innermost regions of the systems.

Section 15 containsa study of meteorites. These have earlier been interpreted in terms of ‘exploded planets’ and condensation processes in thermodynamic equilibrium. It is shown that such models are irreconcilable with the laws of physics and also with the meteoritic observations. These instead are found toprovide abundant information on the processes in jet streams and on early fractionation and condensation. Further work along these lines supplemented with other solar system materials studies may lead to a detailed reconstruction of important events in the evolution of the solar system.

Section 16 demonstrates that the location of the different groups of secondary bodies is a result of a plasma phenomenon occurring at the critical velocity limit. These have recently been studied in detail in the laboratory but have not yet been fully applied to astrophysics.Groups of bodies in the planetary and the satellite systems related by the critical velocity shouldhave the same gravitational potential. There are large chemical differences between groups of different gravitational potential. This is reconcilable with the chemical differentiation found in Section 14.

Finally, Section 17 deals with thestructure of the different groups of bodies and shows that the mass distributionis a function of the spin of the central body. Summarizing the properties and distribution of bodies in the solar system against this background, it is shown that there isno need for ‘missing planets’ or to explode hypothetical large bodies. Nor is there any justification for involvingdrastic ad hoc changes in the orbits of existing bodies. The scheme is complete in the sense that in all places where groups of bodies are expected, such bodies are actually found. All of the existing bodies are accounted for (with the exception of the small Martian satellites!).

The general conclusion is that already with the empirical material now availableit is possible to suggest a series of basic processes leading to the present structure of planet and satellite systems in an internally consistent way. With the expected flow of data from space research the evolution of the solar system may eventually be described with about the same confidence and accuracy as the geological evolution of the Earth.

This is a preview of subscription content, log in to check access.

References

  1. Alfvén, H.: 1942–45, ‘On the Cosmogony of the Solar System’,Stockholm Obs. Ann. 14, No. 2;14, No. 5;14, No. 9.

  2. Alfvén, H.: 1954,On the Origin of the Solar System, Oxford Univ. Press, London.

  3. Alfvén, H.: 1963, ‘On the Early History of the Sun and Sun and the Formation of the Solar System’,Astrophys. J. 137, 981–990.

  4. Alfvén, H.: 1969, ‘Asteroidal Jet Streams’,Astrophys. Space Sci. 4, 84–102.

  5. Alfvén, H.: 1970, ‘Jet Streams in Space’,Astrophys. Space Sci. 6, 161–174.

  6. Alfvén, H. and Arrhenius, G.: 1972, ‘Origin and Evolution of the Earth-Moon System’,The Moon 5, 210–230.

  7. Alfvén, H. and Wilcox, J. M.: 1962, ‘On the Origin of the Satellites and the Planets’,Astrophys. J. 136, 1016–1022.

  8. Allen, C. W.: 1964,Astrophysical Quantities, The Athlone Press, Univ. of London, London, 1964. 291 pp.

  9. Aller, L. H.: 1967, in K. Runcorn (ed).,Int. Dictionary of Geophysics, vol. 1, Pergamon, New York, p. 285.

  10. Anders, E.: 1964,Space Sci. Rev. 3, 583.

  11. Angerth, B., Block, L., Fahleson, U., and Soop, K.: 1962, ‘Experiments with Partly Ionized Rotating Plasmas’,Nucl. Fusion Suppl. Pt. I, p. 39.

  12. Arnold, J. R.: 1965,Astrophys. J. 141, 1536–1548

  13. Arnold, J.: 1969, ‘Asteroid Families and Jet Streams’,Astron. J. 74, 1235–1242.

  14. Arrhenius, G.: 1969, ‘Kosmologisk revolution från månen’,Forskning och Framsteg 7, 2–5.

  15. Arrhenius, G.: 1972, ‘Chemical Effects in Plasma Condensation’ inFrom Plasma to Planet, Nobel Symp. 21 (ed. by A. Elvius), Wiley, New York, pp. 117–132.

  16. Arrhenius, G. and Alfvén, H.: 1971, ‘Fractionation and Condensation in Space’,Earth Planetary Sci. Letters 10, 253–267.

  17. Arrhenius, G. and Asunmaa, S. K.: 1973, ‘Aggregation of Grains in Space’,The Moon,8, 368–391.

  18. Arrhenius, G. and De, B.: 1973, ‘Equilibrium Condensation in a Solar Nebula’,Meteoritics 8, 297–313.

  19. Arrhenius, G., Asunmaa, S., Drever, J. I., Everson, J., Fitzgerald, R. W., Frazer, J. Z., Fujita, H., Hanor, J. S., Lal, D., Liang, S. S., Macdougall, D., Reid, A. M., Sinkankas, J., and Wilkening, L.: 1970, ‘Phase Chemistry, Structure and Radiation Effects in Lunar Samples’,Science 167, 659–661.

  20. Arrhenius, G., Liang, S., Macdougall, D., Wilkening, L., Bhandari, N., Bhat, S., Lal, D., Rajagopalan, G., Tamhane, A. S., and Venkatavaradan, V. S.: 1971, The Exposure History of the Apollo 12 Regolith, inProc. 2nd Lunar Sci. Conf., 3, The M.I.T. Press, Cambridge, Mass., pp. 2583–2598.

  21. Arrhenius, G., Alfvén, H., and Fitzgerald, R.: 1973,Asteroid and Comet Exploration, NASA CR-2291, NASA, Wash., D.C., 56 pp.

  22. Arrhenius, G., De, B. R., and Alfvén, H.: 1974, ‘Origin of the Ocean’,The Sea 5, in press.

  23. Banerjee, S. K.: 1967, ‘Fraction of Iron in the Solar System’,Nature 216, 781.

  24. Banerjee, S. K. and Hargraves, R. B.: 1971, ‘Natural Remanent Magnetization of Carbonaceous Chondrites’,Earth Planetary Sci. Letters 10, 392–396.

  25. Banerjee, S. K. and Hargraves, R. B.: 1972, ‘Natural Remanent Magnetizations of Carbonaceous Chondrites and the Magnetic Field in the Early Solar System’,Earth Planetary Sci. Letters 17, 110–119.

  26. Baxter, D. and Thompson, W. B.: 1973, ‘Elastic and Inelastic Scattering in Orbital Clustering’,Astrophys. J. 183, 323–336.

  27. Berlage, H. P.: 1948, ‘The Disc Theory of the Origin of the Solar System’,Proc. Koninkl. Ned. Acad. Wetenschap.,51, 796.

  28. Birch, F.: 1964, ‘Density and Composition of Mantle and Core’,J. Geophys. Res.,69, 4377–4388.

  29. Birch, F.: 1965, ‘Energetics of Core Formation’,J. Geophys. Res. 70, 6217–6221.

  30. Bishop, E. V. and DeMarcus, W. C.: 1970, ‘Thermal Histories of Jupiter Models’,Icarus 12, 317–330.

  31. Bstrőm, K. and Fredriksson, K.: 1966, ‘Surface Conditions of the Orgueil Meteorite Parent Body as Indicated by Mineral Associations’,Smithsonian Miscellaneous Collections 151, 1–54.

  32. Bobrovnikoff, N. T.: 1972, ‘Physical Theory of Comets in Light of Spectroscopic Data’,Rev. Mod. Phys. 14, 168–178.

  33. Brecher, A.: 1971, ‘On the Primordial Condensation and Accretion Environment and the Remanent Magnetization of Meteorites’, in C. L. Hemmenway, A. F. Cook, and P. M. Millman (eds.)The Evolutionary and Physical Problems of Meteoroids, NASA SP-319, NASA, Wash., D.C.

  34. Brecher, A.: 1972a, ‘Memory of Early Magnetic Fields in Carbonaceous Chondrites’, in H. Reeves (ed.),On the Origin of the Solar System, Centre Nationale de la Recherche Scientifique, Paris, p. 260.

  35. Brecher, A.: 1972b, ‘I. Vapor Condensation of Ni-Fe Phases and Related Problems. II. The Paleomagnetic Record in Carbonaceous Chondrites’, Ph. D. Thesis, Dept. Applied Physics and Information Science, University of California, San Diego.

  36. Brecher, A. and Arrhenius, G.: 1974, ‘The Paleomagnetic Record in Carbonaceous Chondrites: Natural Remanence and Magnetic Properties’,J. Geophys. Res., in press.

  37. Brownlee, R. R. and Cox, A. N.: 1961, ‘Early Solar Evolution’,Sky Telesc. 21, 252–256.

  38. Chapman, C. R.: 1972a, ‘Surface Properties of Asteriods’, Ph. D. Thesis, Massachusetts Institute of Technology.

  39. Chapman, C. R.: 1972b, Paper presented at the Coll. on Toro, Tucson, Ariz., Dec., 1972.

  40. Chapman, C., Johnson, T. V., and McCord, T. B.: 1971, ‘A Review of Spectrophotometric Studies of Asteroids’, in T. Gehrels (ed.),Physical Studies of Minor Planets, NASA SP-267, pp. 51–66.

  41. Danielsson, L.: 1969, ‘On the Interaction Between a Plasma and a Neutral Gas’, Research Report 69-17, Division of Plasma Physics, Royal Institute of Technology, Stockholm.

  42. Danielsson, L.: 1970, ‘Experiments on the Interaction between a Plasma and a Neutral Gas’,Phys. Fluids 13, 2288–2294.

  43. Danielsson, L.: 1971, ‘The profile of a jetstream’, in T. Gehrels (ed.),Physical Studies of Minor Planets, NASA SP-267, Government Printing Office, Washington, D.C., pp. 353–362.

  44. Danielsson, L.: 1973, ‘Riview of the Critical Velocity of Gas-Plasma Interaction, Part I: Experimental Observations’,Astrophys. Space Sci. 24, 459–485.

  45. De, Bibhas: 1973, ‘On the Mechanism of Formation of Loop Prominences’,Solar Phys. 31, 437–447.

  46. DeMarcus, W. C.: 1958, ‘The Constitution of Jupiter and Saturn’,Astron. J. 63, 2.

  47. Demarcus, W. C. and Reynolds, R. T.: 1963, ‘The Constitution of Uranus and Neptune’,Mém. Soc. Roy. Sci. Liège, cinquième série, VII, 51–64.

  48. Dobryshevskii, E. M.: 1964, ‘The Volt-Ampere Characteristics of a Homopolar Cell’,Soviet Phys.-Techn. Phys. 8, 903–905.

  49. Dollfus, A.: 1971, ‘Physical Studies of Asteroids by Polarization of the Light’, in T. Gehrels (ed.),Physical Studies of Minor Planets, NASA SP-267, NASA, Wash., D.C., pp. 95–116.

  50. Drickamer, H. G.: 1965, ‘The Effect of High Pressure on the Electonic Structure of Solids’, in F. Seitz and D. Turnbull (eds.),Solid State Physics,17, 1–333.

  51. Duke, M. B. and Silver, L. T.: 1967, ‘Petrology of Eucrites, Howardites and Mesosiderites’,Geochim. Cosmochim. Acta 31, 1637–1665.

  52. Eberhardt, P., Geiss, J., and Grögler, N.: 1965, ‘Über die Verteilung der Uredelgase im Meteoriten Khor Temiki’,Tschermaks Min. Petr. Mitt. 10, 535–551.

  53. Elsasser, W. M.: 1963, ‘Early History of the Earth’, in J. Geiss and E. D. Goldberg (eds.),Earth Science and Meteoritics, dedicated to F. G. Houtermans, North-Holland Publ. Co., Amsterdam, pp. 1–30.

  54. v. Engel, A.: 1955,Ionized Gases, Oxford Univ. Press., London.

  55. Ephemerides of Minor Planets for 1969. Institute of Theoretical Astronomy, Acad. Sci. USSR. Publication ‘Nauka’ Leningrad Department, Leningrad, 1968.

  56. Epstein, S. and Taylor, H. P. Jr.: 1970, ‘The Concentration and Isotopic Composition of Hydrogen, Carbon and Silicon in Apollo 11 Lunar Rocks and Minerals’, inProc. Apollo 11 Lunar Sci. Conf.,2 (ed. by A. A. Levinson), Pergamon Press, New York, pp. 1085–1096.

  57. Epstein, S. and Taylor, H. P., Jr.: 1972, ‘O18/O16, Si30/Si28, C13/C12, and D/H studies of Apollo 14 and 15 Samples’,Lunar Science vol. III, (ed. by C. Watkins), Lunar Science Institute Contribution No. 88, pp. 236–238.

  58. Euken, A.: 1944, ‘Über den Zustand des Erdinnern’,Naturwissenschaften, No. 14/26, 112–121.

  59. Fireman, E. L.: 1958, ‘Distribution of helium-3 in the Carbo Meteorite’,Nature 181, 1725.

  60. Fleischer, R. L., Price, P. B., Walker, R. M., Maurette, M., and Morgan, G.: 1967a, ‘Tracjs of Heavy Primary Cosmic Rays in Meteorites’,J. Geophys. Res. 72, 355–366.

  61. Fleischer, R. L., Price, P. B., Walker, R. M., and Maurette, M.: 1967b, ‘Origins of Fossil Charged-Particle Tracks in Meteorites’,J. Geophys. Res. 72, 331–353.

  62. Fodor, R. V. and Keil, K.: 1973, ‘Composition and Origin of Lithic Fragments in L- and H-Group Chondrites’,Meteoritics 8, 366–367.

  63. Fowler, W. A.: 1972, ‘What Cooks with Solar Neutrinos?’,Nature 238, 24–26.

  64. French, B. and Short, N.: 1968,Shock Metamorphism of Natural Meteorites, Mono Book Corp., Baltimore, Md.

  65. Fuchs, L. H.: 1971, ‘Occurrence of Wollastonite, Rhönite, and Andradite in the Allende meteorite’,Amer. Mineralogist 56, 2053–2068.

  66. Gast, P. W.: 1971, ‘The Chemical Composition of the Earth, the Moon and Chondritic Meteorites’, in E. C. Robertson (ed.),The Nature of the Solid Earth, McGraw-Hill, New York, pp. 19–40.

  67. Gault, D. E., Quaide, W. L., and Oberbeck, V. R.: 1968, ‘Impact Cratering Mechanics and Structures’, in B. M. French and N. M. Short (eds.),Shock Metamorphism of Natural Materials, Mono Book Corp., Md., pp. 87–99.

  68. Gehrels, T.: 1972a, ‘Physical Parameters of Asteroids and Interrelations with Comets’, inFrom Plasma to Planet, Nobel Symp 21 (ed. by A. Elvius), Wiley, New York, pp. 169–178.

  69. Gehrels, T.: 1972b, Paper presented at the Coll. on Toro, Tucson, Ariz., Dec., 1972.

  70. Gerstenkorn, H.: 1969, ‘The Earliest Past of the Earth-Moon System’,Icarus 11, 189–207.

  71. Gold, T. and Williams, G.: 1972, ‘Secondary Emission Charging and Movement of Dust on the Lunar Surface’, Sixth ESLAB Symp.,Photon and Particle Interactions with Surfaces in Space. Noordwijk, Netherlands, Sept. 26–29, 1972 (abstract).

  72. Gopalan, K. and Wetherill, G. W.: 1969, ‘Rubidium-Strontium Age of Amphoterite (LL) Chondrites’,J. Geophys. Res. 74, 4349–4358.

  73. Greenstein, J. L. and Arpigny, C.: 1962, ‘The Visual Region of the Spectrum of Comet Markos (1957d) at High Resolution’,Astrophys. J. 135, 892–905.

  74. Grevesse, N., Blanquet, G. and Boury, A.: 1968, ‘Abondances solaires de quelques éléments représentatifs au point de vue de la nucléosynthese’, in L. H. Ahrens (ed.),Origin and Distribution of the Elements, Pergamon, New York, pp. 177–182.

  75. Halliday, I.: 1969, ‘Comments on the Mean Density of Pluto’,Publ. Astron. Soc. Pacific 81, 285–287.

  76. Hanks, T. C. and Anderson, D. L.: 1969, ‘The Early Thermal History of the Earth’,Phys. Earth Planetary Interior 2, 19–29.

  77. Hapke, B. W., Cohen, A. J., Cassidy, W. A., and Wells, E. N.: 1970, ‘Solar Radiation Effects on the Optical Properties of Apollo 11 Samples’, inProc. Apollo 11 Lunar Sci. Conf.,3 (ed. by A. Levinson), Pergamon Press, New York, pp. 2199–2212.

  78. Harris, P. G. and Tozer, D. C.: 1967, ‘Fractionation of Iron in the Solar System’,Nature 215, 1449–51.

  79. Hassan, H. A.: 1966, ‘Characteristics of a Rotating Plasma’,Phys. Fluids 9, 2077–2078.

  80. Heymann, D.: 1967, ‘On the Origin of Hypersthene Chondrites: Ages and Shock Effects of Black Chondrites’,Icarus 6, 189–221.

  81. Hohenberg, C. M. and Reynolds, J. H.: 1969, ‘Preservation of the Iodine-Xenon Record in Meteorites’,J. Geophys. Res. 74, 6679–6683.

  82. Honda, M. and Arnold, J. R.: 1967, ‘Effects of Cosmic Rays on Meteorites’, inHandbuch der Physik 46/2, 613–632, Springer-Verlag, Berlin-Heidelberg.

  83. Hubbard, W. B.: 1969, ‘Thermal Models of Jupiter and Saturn’,Astrophys. J. 155, 333–344.

  84. Jedwab, J.: 1967, ‘La magnetite en plaquettes des météorites carbonées d'Alais, Ivuna et Orgueil’,Earth Planetary Sci. Letters 2, 440–444.

  85. Jokipii, J. R.: 1964, ‘The Distribution of Gases in the Protoplanetary Nebula’,Icarus 3, 248.

  86. Kaula, W. M.: 1971, ‘Dynamical Aspects of Lunar Origin’,Rev. Geophys. Space Phys. 9, 217–238.

  87. Kerridge, J. F.: 1970, ‘Some Observations on the Nature of Magnetite in the Orgueil Meteorite’,Earth Planetary Sci. Letters 9, 299–306.

  88. Kerridge, J. F. and Vedder, J. F.: 1972, ‘Accretionary Processes in the Early Solar System: an Experimental Approach’,Science 177, 161–163.

  89. Kirsten, T. A. and Schaeffer, O. A.: 1969, ‘High Energy Interactions in Space’, in L. C. L. Yuan (ed.),Elementary Particles, Science, Technology and Society, Academic Press, New York 76–157.

  90. Kumar, S. S.: 1972 ‘On the Formation of Jupiter’,Astrophys. Space Sci. 16, 52–54.

  91. Lal, D.: 1972, ‘Hard Rock Cosmic Ray Archaeology’,Space Sci. Rev. 14, 3–102.

  92. Lehnert, B.: 1966, ‘Ionization Process of a Plasma’,Phys. Fluids 9, 774–779.

  93. Lehnert, B.: 1967, ‘Space-Charge Effects by Nonthermal Ions in a Magnetized Plasma’,Phys. Fluids 10, 2216.

  94. Lehnert, B.: 1970, ‘On the Conditions for Cosmic Grain Formation’,Cosmic Electrodyn. 1, 219–232.

  95. Levin, B. J.: 1972, ‘Origin of the Earth’, in A. R. Ritsema (ed.),Upper Mantle, Tectonophysics 13, 7–29.

  96. Lewis, J. S.: 1971a, ‘Consequences of the Presence of Sulfur in the Core of the Earth’,Earth Planetary Sci. Letters 11, 130–134.

  97. Lewis, J. S.: 1971b, ‘Satellites of the Outer Planets: Their Physical and Chemical Nature’,Icarus 15, 174–185.

  98. Lin, S.-C.: 1961, ‘Limiting Velocity for a Rotating Plasma’,Phys. Fluids 4, 1277–1288.

  99. Lindblad, B. A. and Southworth, R. B.: 1971, ‘A Study of Asteroid Families and Streams by Computer Techniques’, in T. Gehrels (ed.)Physical Studies of Minor Planets, NASA SP-267, NASA, Wash., D.C., p. 337.

  100. Lodochnikov, V. N.: 1939, ‘Some General Problems Connected with Magma Producing Basaltic Rocks’,Zap. Mineral. O-va. 64, 207–223.

  101. Lyttleton, R. A.: 1969, ‘On the Internal Structures of Mercury and Venus’,Astrophys. Space Sci. 5, 18–35.

  102. MacDougall, J. D.: 1972, ‘Particle Track Records in Natural Solids from Oceans on Earth and Moon’, Ph. D. Thesis, University of California, San Diego.

  103. MacDougall, D., Martinek, B., and Arrhenius, G.: 1972, ‘Regolith Dynamics’, in C. Watkins (ed.), in vol. IIILunar Science, Lunar Science Inst. Contrib. No. 88, The Lunar Science Institute, Houston, Texas, pp. 498–500.

  104. Macdougall, D., Rajan, R. S., and Price, P. B.: 1973, ‘Gas-Rich Meteorites: Possible Evidence for Origin on a Regolith’,Science 183, 73–74.

  105. Majeva, S. V.: 1971, ‘Thermal History of the Earth with Iron Core’,Izv. Akad. Nauk SSSR, Fiz. Zemli, 1971, No. 1, 3–12, English translation,Physics of the Solid Earth 1971, 1–7.

  106. Manka, R. H., Michel, F. C., Freeman, J. W., Dyal, P., Parkin, C. W., Colburn, D. S., and Sonett, C. P.: 1972., Evidence for acceleration of lunar ions, in C. Watkins (ed.)Lunar Science, Vol. III, Lunar Science Contribution No. 88, The Lunar Science Institute, Houston, Texas, p. 504.

  107. Marti, K.: 1973, ‘Ages of the Allende Chondrules and Inclusions’Meteoritics 8, 51.

  108. Mason, B. (ed.): 1971,Handbook of Elemental Abundances in Meteorites Gordon and Breach Sci. Publ., New York.

  109. Mendis, A.: 1973, ‘Comet-Meteor Stream Complex’,Astrophys. Space Sci. 20, 165–176.

  110. McCord, T. B.: 1966, ‘Dynamical Evolution of the Neptunian System’.Astron. J. 71, 585–590.

  111. McCrosky, R. E.: 1970, ‘Fireballs and the Physical Theory of Meteors’,Bull. Astron. Inst. Czech. 21, 271.

  112. McQueen, R. L. and Marsh, S. P.: 1960, ‘Equations of State for Nineteen Metallic Elements from Shock-Wave Measurements to Two Megabars’,J. Appl. Phys. 31, 1253–1269.

  113. Millman, P. M.: 1972, ‘Cometary Meteoroids’, inFrom Plasma to Planet Nobel Symp,21, (ed. by A. Elvius), Wiley, New York, pp. 157–168.

  114. Morrison, D.: 1973, ‘New Techniques for Determining Sizes of Satellites and Asteroids’,Comments Astrophys. Space Phys. 5, 51–56.

  115. Müller, E. A.: 1968, ‘The Solar Abundances’, in L. H. Ahrens (ed.),Origin and Distribution of the Elements, Pergamon, New York, pp. 155–176.

  116. Murphy, R. E., Cruikshank, D. P., and Morrison, D.: 1972, ‘Radii, Albedos, and 20-Micron Brightness temperatures of Iapetus and Rhea’,Astrophys. J. Letters 177, L93.

  117. Neukum, G., Mehl A., Fechtig, H., and Zahringer, J.: 1970, ‘Impact Phenomena of Micrometeorites on Lunar Surface Material’,Earth Planetary Sci. Letters 8, 31–35.

  118. Neuvonen, K. J., Ohlson, B., Papunen, Heikki, Häkli, T. A., and Ramdohr, Paul: 1972, ‘The Haverö Ureilite’,Meteoritics 7, 515–531.

  119. Newburn, R. L. Jr. and Gulkis, S.: 1973, ‘A Survey of the Outer Planets Jupiter, Saturn, Uranus, Neptune, Pluto, and Their Satellites’,Space Sci. Rev. 14, 179–271.

  120. Öpik, E. J.: 1963,Advan. Astron. Astrophys. 2, 219.

  121. Öpik, E. J.: 1966,Advan. Astron. Astrophys. 4, 302.

  122. Orowan, E.: 1969, ‘Density of the Moon and Nucleation of Planets’,Nature 222, 867.

  123. Papanastassiou, D. A., Gray, C. M. and Wasserburg, G. J.: 1973, ‘The Identification of Early Solar Condensates in the Allende meteorite’,Meteoritics 8, 417–418.

  124. Pellas, P.: 1972, ‘Irradiation History of Grain Aggregates in Ordinary Chondrites. Possible Clues to the Advanced Stages of Accretion’,From Plasma to Planet, Nobel Symp. 21 (ed. by A. Elvius), Wiley, New York, pp. 65–92.

  125. Petschek, H. E.: 1960, ‘Comment Following Alfvén, H., Collision between a Nonionized Gas and a Magnetized Plasma’,Rev. Mod. Phys. 32, 710–712.

  126. Podosek, F. A.: 1970, ‘Dating of Meteorites by the High-Temperature Release of Iodine-Correlated Xe129 Geochim.Cosmochim. Acta 34, 341–365.

  127. Price, P. D., Rajan, R. S., Hutcheon, I. D., Macdougall, D., and Shirk, E. K.: 1973, ‘Solar Flares, Past and Present’, in J. W. Chamberlin and C. Watkins (eds),Lunar Science, vol. 4, Lunar Science Institute, Houston, Texas, pp. 600–602.

  128. Rama Murthy, V. and Hall, H. T.: 1970, ‘On the Possible Presence of Sulfur in the Earth's Core’,Phys Earth Planetary Interior 2, 276–282.

  129. Ramsey, W. H.: 1948, ‘On the Constitution of the Terrestrial Planets’,Monthly Notices Roy. Astron. Soc. 108 406–413.

  130. Ramsey, W. H.: 1949, ‘On the Nature of the Earth's Core’Monthly Notices Roy. Astron. Soc., Geophys. Suppl. 5, 409–426.

  131. Reid, A. M. and Fredriksson, K.: 1967, ‘Chondrules and Chondrites’, in P. H. Abelson (ed.),Researches in Geochemistry, vol. 2, John Wiley, New York, pp. 170–203.

  132. Reynolds, R. T. and Summers, A. L.: 1965, ‘Models of Uranus and Neptune’,J. Geophys. Res. 70, 199–208.

  133. Ringwood, A. E.: 1959, ‘On the Chemical Evolution and Densities of the Planets’,Geochim. Cosmochim. Acta 15, 257–283.

  134. Ringwood, A. E.: 1966, ‘Chemical Evolution of the Terrestrial Planets’,Geochim. Cosmochim. Acta 30, 41–104.

  135. Samara, G. A.: 1967, ‘Insulator-to-Metal Transition at High Pressure’,J. Geophys. Res. 72, 671–678.

  136. Schubart, J.: 1971, ‘Asteroid Masses and Densities, in T. Gehrels (ed.),Physical Studies of Minor Planets, NASA SP-267, pp. 33–40.

  137. Seidelmann, P. K., Klepczynski, W. J., Duncombe, R. L., and Jackson, E. S.: 1971, ‘Determination of the Mass of Pluto’,Astron. J. 76, 488–492.

  138. Sherman, J. C.: 1970a, Dept. of Electron and Plasma Physics Report 70-30, Royal Institute of Technology, Stockholm.

  139. Sherman, J. C.: 1970b, Dept. of Electron and Plasma Physics Report 70-14, Royal Institute of Technology, Stockholm.

  140. Sherman, J. C.: 1973, ‘Review of the Critical Velocity Gas-Plasma Interaction, Part II: Theory’,Astrophys. Space Sci. 24, 487–510.

  141. Signer, P. and Suess, H. E.: 1963, ‘Rare Gases in the Sun, in the Atmosphere, and in Meteorites’. in J. Geiss and E. D. Goldberg (eds.),Earth Science and Meteoritics, North-Holland Publ. Co., Amsterdam, pp. 241–272.

  142. Simakov, G. V., Podurets, M. A., and Trunin, R. F.: 1973,Doklady Akad. Nauk SSSR 211, 1330.

  143. Sokol, P. M.: 1968, ‘Analysis of a Rotating Plasma Experiment’,Phys. Fluids 11, 637–645.

  144. Suess, H. E. and Urey, H. C.: 1956, ‘Abundances of the Elements’,Rev. Mod. Phys. 28, 53–74.

  145. Swings, P., and Page, T.: 1948,Astrophys. J. 108, 526.

  146. Toksőz, M. N., Solomon, S. C., Minear, J. W., and Johnston, D. H.: 1972.The Moon 4, 190.

  147. Turekian, K. K. and Clark, S. P., Jr.: 1969, ‘Inhomogeneous accumulation of the Earth from the Primitive Solar Nebula’,Earth Planetary Sci. Letters 6, 346–348.

  148. Urey, H. C.: 1952,The Planets: Their Origin and Development, Yale Univ. Press, New Haven, Conn.

  149. Urey, Harold C.: 1972, ‘Abundances of the Elements. Part IV: Abundances of Interstellar Molecules and Laboratory Spectroscopy’,Ann. New York Acad. Sci. 194, 35–44.

  150. Urey, H. C. and Mayeda, T.: 1959, ‘The Metallic Particles of Some Chondrites’,Geochim. Cosmochim. Acta 17, 113–124.

  151. Van Schmus, W. R. and Wood, J. A.: 1967, ‘A Chemical-Petrological Classification for the Chondritic Meteorites’,Geochim. Cosmochim. Acta 31, 747–765.

  152. Verniani, F.: 1969, ‘Structure and Fragmentation of Meteorites’,Space Sci. Rev. 10, 230.

  153. Vinogradov, A. P.: 1962, ‘Origin of the Earth's Shells’,Izv. Akad. Nauk SSSR, Ser. Geol. 11, 3–17.

  154. Vinogradov, A. P. and Yaroshovsky, A. A.: 1967, ‘Further Investigation ofthe Differentiation Mechanism of the Earth's Mantle: The Problem of Heat-Mass Transfer in Connection With Zone Melting in the Mantle’, IUGG General Assembly, 14th, Abstracts of Papers, IIa, A-2.

  155. Voshage, H. and Hintenberg, H.: 1963, ‘The Cosmic-Ray Exposure Ages of Iron Meteorites as Derived from the Isotopic Composition of Potassium and Production Rates of Cosmogenic Nuclides in the Past’, inRadioactive Dating, IAEA, Vienna, pp. 367–379.

  156. Wänke, H.: 1965, ‘Der Sonnenwind als Quelle der Uredelgase in Steinmeteoriten’,Z. Naturforsch. 20A, 946.

  157. Wänke, H.: 1966, ‘Meteoritenalter und verwandte Probleme der Kosmochemie’,Fortschr. Chem. Forsch. 7, 332–408.

  158. Wasserburg, G. J., Papanastassiou, D. A., and Sanz, H. G.: 1969, ‘Initial Strontium for a Chondrite and the Determination of a Metamorphism or Formation Interval’,Earth Planetary Sci. Letters 7, 33–43.

  159. von Weizsäcker, C. F.: 1944, ‘Über die Entstehung des Planetsystems’,Z. Astrophys. 22, 319–355.

  160. Wetherill, G. W.: 1968, ‘Lunar Interior: Constraint on Basaltic Composition’,Science 160, 1256–1257.

  161. Wetherill, G. W.: 1971, ‘Cometary versus Asteoidal Origin of Chondritic Meteorites’, in T. Gehrels (ed.),Physical Studies of Minor Planets, NASA SP-267, NASA, Wash., D.C.

  162. Wiik, H. B.: 1956 ‘The Chemical Composition of some Stony Meteorites’,Geochim. Cosmochim. Acta 9, 279–289.

  163. Wilcox, J. M.: 1972, ‘Why Does the Sun Sometimes Look Like a Magnetic Monopole?’ inComments on Modern Physics, Part C',Comments Astrophys. Space Phys. 4, 141–147.

  164. Wilkening, L., Lal, D., and Reid, A. M.: 1971, ‘The Evolution of the Kapoeta Howardite Based on Fossil Track Studies’,Earth Planetary Sci. Letters 10, 334–340.

  165. Worrall, G. and Wilson, A. M.: 1972, ‘Can Astrophysical Abundances Be Taken Seriously?’,Nature 236, 15–18.

  166. Zähringer, J.: 1966, ‘Die Chronologie der Chondriten aufgrund von Edelgasisotopen-Analysen’,Meteoritika 27, 25.

  167. Zimmerman, P. D. and Wetherill, G. W.: 1973, ‘Asteroidal Sources of Meteorites’,Science 182, 51–53.

Download references

Author information

Additional information

Parts I, II and III were published inAstrophys. Space Sci. 8, 338–421;9, 3–33 and21, 117–176.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alfvén, H., Arrhenius, G. Structure and evolutionary history of the solar system, IV. Astrophys Space Sci 29, 63–159 (1974). https://doi.org/10.1007/BF00642720

Download citation

Keywords

  • Solar System
  • Gravitational Potential
  • Critical Velocity
  • Satellite System
  • Homogeneous Chemical