Astrophysics and Space Science

, Volume 72, Issue 1, pp 33–53 | Cite as

Notes on the central forcern

  • R. Broucke
Article

Abstract

In this article we collect several results related to the classical problem of two-dimensional motion of a particle in the field of a central force proportional to a real power of the distancer. At first we generalize Whittaker's result of the fourteen powers ofr which lead to intergrability with elliptic functions. We enumerate six more general potentials, including Whittaker's fourteen potentials as particular cases (Sections 2 and 3).

Next, we study the stability of the circular solutions, which are the singular solutions of the problem, in Whittaker's terminology. The stability index is computed as a function of the exponentn and its properties are explained, especially in terms of bifurcations with other families of ordinary periodic solutions (Sections 4, 5 and 7). In Section 6, the detailed solution of the inverse cube force problem is given in terms of an auxiliary variable which is similar to the eccentric anomaly of the Kepler problem.

Finally, it is shown that the stable singular circular solutions of the central force problem generalize to stable singular elliptic solutions of the two-fixed-center problem. The stability and the bifurcations with other families of periodic solutions of the two-fixed-center problem are also described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksnes, K.: 1970,Astron. J. 1066.Google Scholar
  2. Charlier, C. L.: 1902,Die Mechanik des Himmels, Leipzig Verlag non Veit.Google Scholar
  3. Contopoulos, G.: 1970,Astron. J. 75, 108.Google Scholar
  4. Danby, J. M. A.: 1970,Fundamentals of Celestial Mechanics, MacMilan Company, New York.Google Scholar
  5. Deprit, A.: 1960, inMathematiques du 20ème siècle, Vol. 1 Dept of National Education, Brussels, p. 45.Google Scholar
  6. Deprit, A. and Henrard, J.: 1967,Astron. J. 72, 158.Google Scholar
  7. Garfinkel, B.: 1959,Astron. J. 64, 353.Google Scholar
  8. Goldstein, H.: 1957,Classical Mechanics, Addison-Wesley Publishing Company, Reading, Mass.Google Scholar
  9. Hénon, M.: 1965,Ann. d'Astrophys. 28, 992.Google Scholar
  10. Hénon, M. and Guyot, M.: 1970, in G.E.O. Giacaglia (ed.),Periodic Orbits, Stability and Resonances, Reidel Publ. Co., Dordrecht, p. 349.Google Scholar
  11. Lagerstrom, P. A. and Kevorkian, J.: 1963,Astron. J. 68, 84.Google Scholar
  12. Legendre, A. M.: 1825,Traité sur les Fonctions elliptiques.Google Scholar
  13. Losco, L.: 1977,Celest. Mech. 15, 477.Google Scholar
  14. Markellos, V. V.: 1976,Astrophys. Space Sci.,43, 449.Google Scholar
  15. McCuskey, S. W.: 1963,Introduction to Celestial Mechanics, Addison-Wesley Publishing Company, Reading, Mass.Google Scholar
  16. Moulton, F. R.: 1914,An Introduction to Celestial Mechanics, The Macmillan Company, New York.Google Scholar
  17. Newton, I.: 1686,Philisophiae Naturalis Principia Mathematica, Vol. 1 (Molte's translation, University of California Press, Berkeley and Los Angeles, 1966).Google Scholar
  18. Nobile: 1908,Giornale di Mat. 46, 313.Google Scholar
  19. Oertel, G. K. and Singer, S. F.: 1960,Astron. Acta 5, 356.Google Scholar
  20. Pars, L. A.: 1965,A Treatise on Analytical Dynamics, John Wiley and Sons, New York.Google Scholar
  21. Stader, J. F.: 1953,J. reine angew. Math. 46, 262.Google Scholar
  22. Sterne, T. E.: 1962,An Introduction to Celestial Mechanics, Interscience Tracts on Physics and Astronomy, No. 9, Interscience Publishers, New York, p. 127.Google Scholar
  23. Vinti, J. P.: 1969,Astron. J. 74, 25.Google Scholar
  24. Whittaker, E. T.: 1959,Analytical Dynamics of Particles, Cambridge University Press, Cambridge.Google Scholar
  25. Whittaker, E. T. and Watson, G. N.: 1965,A Course of Modern Analysis, Cambridge University Press, Cambridge.Google Scholar

Copyright information

© D. Reidel Publishing Co 1980

Authors and Affiliations

  • R. Broucke
    • 1
  1. 1.Dept. of Aerospace Engineering and Engineering MechanicsUniversity of Texas at AustinAustinU.S.A.

Personalised recommendations