Advertisement

Antonie van Leeuwenhoek

, Volume 69, Issue 1, pp 1–14 | Cite as

Limitations of thermophilic anaerobic wastewater treatment and the consequences for process design

  • Jules B. van Lier
Article

Abstract

Thermophilic anaerobic digestion offers an attractive alternative for the treatment of medium- and high-strength wastewaters. However, literature reports reveal that thermophilic wastewater treatment systems are often more sensitive to environmental changes than the well-defined high-rate reactors at the mesophilic temperature range. Also, in many cases a poorer effluent quality is experienced while the carry over of suspended solids in the effluent is relatively high. In this paper recent achievements are discussed regarding the process stability of thermophilic anaerobic wastewater treatment systems. Laboratory experiments reveal a relatively low sensitivity to temperature changes if high-rate reactors with immobilized biomass are used. Other results show that if a staged process is applied, thermophilic reactors can be operated for prolonged periods of time under extreme loading conditions (80–100 kg chemical oxygen demand.m-3.day-1), while the concentrations of volatile fatty acids in the effluent remain at a low level.

Key words

anaerobic biogas production rate high-rate inhibition plug-flow thermophilic volatile fatty acids wastewater treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahring BK (1991) Methanogenesis during thermophilic anaerobic digestion with focus on acetate. In: Verachtert H & Verstraete W (Eds) Proceedings of the International Symposium on Environmental Biotechnology, part 1, Oostende (Belgium), Koninklijke Vlaamse Ingenieurs-vereniging VZW, Antwerp, Belgium (pp 275–283)Google Scholar
  2. Ahring BK (1992) Turn-over of acetate in hot springs at 70°C. In: Thermophiles: Science and Technology, International Conference, Reykjavík, Iceland, 23rd–26th August 1992, IceTec Publ. p 130Google Scholar
  3. Ahring BK (1994) Status on science and application of thermophilic anaerobic digestion. Wat. Sci. Tech. 30(12): 241–249Google Scholar
  4. Ahring BK (1995) Methanogenesis in thermophilic bioreactors. Antonie van Leeuwenhoek 67: 91–102PubMedCrossRefGoogle Scholar
  5. Ahring BK, Rintala J, Nozhevnikova AN & Mathrani IM (1995) Metabolism of acetate in thermophilic (55°C) and extreme thermophilic (70°C) UASB granules. In: Proceedings of International Meeting on: Anaerobic Processes for Bioenergy and Environment, Copenhagen, 25–27 January, 1995Google Scholar
  6. Ahring BK, Schmidt JE, Winther-Nielsen M, Macario AJL & Conway de Macario E (1993) Effect of medium composition and sludge removal on the production, composition and architecture of thermophilic (55°C) acetate-utilizing granules from an upflow anaerobic sludge blanket reactor. Appl. Environ. Microbiol. 59: 2538–2545PubMedGoogle Scholar
  7. Ahring BK & Westermann P (1985) Methanogenesis from acetate: physiology of a thermophilic acetate-utilizing methanogenic bacterium. FEMS Microbiol. Lett. 28: 15–19CrossRefGoogle Scholar
  8. Aitken MD & Mullennix RW (1992) Another look at thermophilic anaerobic digestion of waste water sludge. Water Environ. Res. 64: 915–919Google Scholar
  9. Angelidaki I & Ahring BK (1994) Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Wat. Res. 28: 727–731CrossRefGoogle Scholar
  10. Aoki N & Kawase M (1991) Development of high-performance thermophilic two-phase digestion process. Wat. Sci. Technol. 23 (7–9): 1147–1156Google Scholar
  11. Bendixen HJ (1994) Safeguards against pathogens in Danish biogas plants. Wat. Sci. Tech. 30(12): 171–180Google Scholar
  12. Braun R & Huss S (1982) Anaerobic digestion of distillery effluents. Process Biochem. 17–4: 25–27Google Scholar
  13. Buhr HO & Andrews JF (1977) The thermophilic anaerobic digestion process. Wat. Res. 11: 129–143CrossRefGoogle Scholar
  14. Cail R & Barford JP (1985) Thermophilic semi-continuous anaerobic digestion of palm-oil mill effluent. Agr. Wastes 13: 295–304CrossRefGoogle Scholar
  15. Clarens M & Moletta R (1990) Kinetic studies of acetate fermentation byMethanosarcina sp. MSTA-1. Appl. Microbiol. Biotechnol. 33, 239–244PubMedCrossRefGoogle Scholar
  16. De Zeeuw W (1984) Acclimatization of anaerobic sludge for UASB reactor start-up. Ph.D. thesis, Department of Environmental Technology, Agricultural University, Wageningen, The NetherlandsGoogle Scholar
  17. Disley RS, Walmsley MJ & Forster CF (1992) Inhibition of gas production by thermophilic anaerobic sludges: The effect of organic compounds. Environ. Technol. 13: 1153–1159Google Scholar
  18. Duff SJB & Kennedy KJ (1982) Effect of hydraulic and organic over-loading on thermophilic down flow stationary fixed film (DSFF) reactor. Biotechnol. Lett. 4: 815–820CrossRefGoogle Scholar
  19. Fernandez N & Forster CF (1993) A study of the operation of mesophilic and thermophilic anaerobic filters treating a synthetic coffee waste. Biores. Technol. 45: 223–227CrossRefGoogle Scholar
  20. Fukuzaki S, Nishio N, Shobayashi M & Nagai S (1990) Inhibition of the fermentation of propionate to methane by hydrogen, acetate, and propionate. Appl. Environ. Microbiol. 56: 719–723PubMedGoogle Scholar
  21. Garber WF, Ohara GT, Colbaugh JE & Raksit SK (1975) Thermophilic digestion at the Hyperion treatment plant. J. Wat. Poll. Contr. Fed. 47: 950–961.Google Scholar
  22. Ghosh S, Klass DL Christopher RW & Edwards VH (1980) Thermophilic biogasification of biomass. In: Proc. 7th Energy Technol. Conf. and Expo., March 24–26, Washington DCGoogle Scholar
  23. Good P, Moundry R & Fluri P (1982) Use of fixed film and CSTR reactor for anaerobic treatment of stillage of wood hydrolysate. Biotechnol. Lett. 4: 595–600CrossRefGoogle Scholar
  24. Grotenhuis JTC, Smit M, Plugge CM, Xu Y, Lammeren AAMvan, Stams AJM & Zehnder AJB (1991) Bacteriological composition and structure of granular sludge adapted to different substrates. Appl. Environ. Microbiol. 57: 1942–1949PubMedGoogle Scholar
  25. Grotenhuis JTC, Stams AJM & Zehnder AJB (1992) Hydrophobicity and electrophoretic mobility of anaerobic isolates from methanogenic granular sludge. Appl. Env. Microbiol. 58: 1054–1056Google Scholar
  26. Harris WL & Dague RR (1993) Comparative performance of anaerobic filters at mesophilic and thermophilic temperatures. Water Environ. Res. 65: 764–771Google Scholar
  27. Heitzer A, Kohler H-PE, Reichert P & Hamer G (1991) Utility of phenomenological models for describing temperature dependence of bacterial growth. Appl. Environ. Microbiol. 57: 2656–2665PubMedGoogle Scholar
  28. Hulshoff Pol LW (1989) The phenomenon of granulation of anaerobic sludge. Ph.D. Thesis, Department of Environmental Technology, Agricultural University, Wageningen, The NetherlandsGoogle Scholar
  29. Huser BA, Wuhrmann K & Zehnder AJB (1982)Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen oxidizing methanobacterium. Arch. Microbiol. 132: 1–9CrossRefGoogle Scholar
  30. Kaiser SK, Harris WL & Dague RR (1993) Initial studies on the temperature phased anaerobic biofilter process. In: Proc. of 66th Annual Conference & Exposition of Water Environment Federation, October 3–7 1993, Anaheim, California USA, pp 319–329Google Scholar
  31. Kamagata Y & Mikami E (1991) Isolation and characterization of a novel thermophilicMethanosaeta strain. Int. J. Syst. Bacteriol. 41: 191–196Google Scholar
  32. Kawase M, Nomura T & Majima T (1989) An anaerobic fixed bed reactor with a porous ceramic carrier. Wat. Sci. Technol. 21–4/5: 77–86Google Scholar
  33. Kennedy KJ & Van denBerg L (1982) Thermophilic downflow stationary fixed film reactors for methane production from bean bleaching waste. Biotechnol. Lett. 4: 171–176CrossRefGoogle Scholar
  34. Kida K, Ikbal & Sonoda Y (1992) Treatment of coffee waste by slurry-state anaerobic digestion. J. Ferm. Bioeng. 73: 390–395CrossRefGoogle Scholar
  35. Lanting J, Jordan JA, Schone MT, Kull A, Carey WW & Kitney BL (1989) Thermophilic anaerobic digestion of coffee wastewater. In: Dalton CS & Wukasch RF (Eds) Proceedings of 43rd Industrial Waste Conference, May 1988, Lafayette, Indiana, USA. (pp 513–524) Lewis Publishers, Chelsea MichiganGoogle Scholar
  36. Lema JM, Soto M, Méndez R & Blázquez R (1988) Comparison of mesophilic and thermophilic filters treating very high saline wastewaters. In: Poster-Proceedings of 5th International Symposium on Anaerobic Digestion, Bologna Italy, May 22–26, (pp 547–549)Google Scholar
  37. Lens PM, DeBeer D, Cronenberg CH, Houwen FP, Ottengraf SPP & Verstraete W (1993) Heterogenous distribution of microbial activity in methanogenic aggregates: pH and glucose microprofiles. Appl. Environ. Microbiol. 59: 3803–3815PubMedGoogle Scholar
  38. Macleod C & Forster CF (1988) Heavy metal inhibition of gas production by thermophilic anaerobic sludges. Microbiol. 54: 31–40Google Scholar
  39. Morvai L, Mihaltz P & Hollo J (1992) Comparison of the kinetics of acetate biomethanation by raw and granular sludges. Appl. Microbiol. Biotechnol. 36: 561–567CrossRefGoogle Scholar
  40. Nozhevnikova AN & Chudina VI (1984) Morphology of the thermophilic acetate bacteriumMethanothrix thermoacetophila sp. nov., Microbiology 53: 618–624Google Scholar
  41. Ohtsuki T, Watanabe M & Miyaji Y (1992) Start-up of thermophilic UASB (upflow anaerobic sludge blanket) reactors using microcarrier and mesophilic granular sludge. Wat. Sci. Tech. 26(3/4): 877–886Google Scholar
  42. Ohtsuki T, Tominaga S, Morita T & Yoda M (1994) Thermophilic UASB system start-up and management-change in sludge characteristics in the start-up procedure using mesophilic granular sludge. In: Paper Pre-prints of the Seventh International Symposium on Anaerobic Digestion, Cape Town, January 23–27, 1994, South Africa (pp 348–357)Google Scholar
  43. Ollivier B, Lombardo A & Garcia JL (1984) Isolation and characterization of a new thermophilicMethanosarcina strain (strain MP). Ann. Microbiol. (Inst. Pasteur) 135B: 187–198CrossRefGoogle Scholar
  44. Patel GB (1984) Characterization and nutritional properties ofMethanothrix concilii sp.nov., a mesophilic aceticlastic methanogen. Can. J. Microbiol. 30: 1383–1396Google Scholar
  45. Patel GB & Sprott GD (1990)Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) andMethanosaeta thermoacetophila nom. rev., comb. nov., Int. J. Syst. Bacteriol 40: 79–82CrossRefGoogle Scholar
  46. Pavan P, Musacco A, Cecchi F, Bassetti A, & Mata-Alvarez J (1994) Thermophilic semi-dry anaerobic digestion process of the organic fraction of municipal solid waste during transient conditions. Environ. Technol. 15: 1173–1182CrossRefGoogle Scholar
  47. Pavlostathis SG & Giraldo-Gomez E (1991) Acetate oxidation in a thermophilic anaerobic sewage-sludge digestor: the importance of non-aceticlastic methanogenesis from acetate. FEMS Microbiol. Ecol. 86: 149–158CrossRefGoogle Scholar
  48. Perry RH & Green DW (eds) (1984) Perry's chemical engineers' handbook, section 14, 6th edition, McGraw-Hill Publishing Co., New York, USAGoogle Scholar
  49. Rintala JA & Lepistö SS (1992) Anaerobic treatment of thermomechanical pulping whitewater at 35–70°C. Wat. Res. 26: 1297–1305CrossRefGoogle Scholar
  50. Rintala JA, Lepistö SS & Ahring BK (1993) Acetate degradation at 70°C in upflow anaerobic sludge blanket reactors and temperature response of granules grown at 70°C. Appl. Environ. Microbiol. 59: 1742–1746PubMedGoogle Scholar
  51. Rudd T, Hicks SJ & Lester JN (1985) Comparison of the treatment of a synthetic meat waste by mesophilic and thermophilic anaerobic fluidized bed reactors. Environ. Technol. Lett. 6: 209–224Google Scholar
  52. Schmidt JE & Ahring BK (1993) Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an Upflow Anaerobic Sludge Blanket reactor. Appl. Environ. Microbiol. 59: 2546–2551PubMedGoogle Scholar
  53. Schmidt JE & Ahring BK (1994) Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Appl. Microbiol. Biotechnol. 42: 457–462Google Scholar
  54. Schönheit P, Moll J & Thauer RK (1980) Growth parameters (Ks, μmax, Ys) ofMethanobacterium thermoautotrophicum. Arch. Microbiol. 127: 59–65CrossRefGoogle Scholar
  55. Schraa G (1983) Conversion of soluble organic matter with the thermophilic anaerobic attached film expanded bed process. PhD thesis, Cornell Univ., Ithaca, NY, USAGoogle Scholar
  56. Schraa G & Jewell WJ (1984) High rate conversions of soluble organics with the thermophilic anaerobic attached expanded bed. J. Wat. Poll. Contr. Fed. 56: 226–232Google Scholar
  57. Seif HAA, Joshi SG & Gupta SK (1992) Effect of organic load and reactor height on the performance of anaerobic mesophilic and thermophilic fixed film reactors in the treatment of pharmaceutical wastewater. Environ. Technol. 13: 1161–1168Google Scholar
  58. Smith JM (1981) Chemical Engineering Kinetics. McGraw-Hill, Inc. USAGoogle Scholar
  59. Smith MR & Mah RA (1978) Growth and methanogenesis byMethanosarcina strain 227 on acetate and methanol. Appl. Environ. Microbiol. 36: 870–879PubMedGoogle Scholar
  60. Soto M, Méndez R & Lema JM (1992) Characterization and comparison of biomass from mesophilic and thermophilic fixed bed anaerobic digesters. Wat. Sci. Technol. 25–7: 203–212Google Scholar
  61. Souza ME, Fuzaro G & Polegato AR (1992) Thermophilic anaerobic digestion of vinasse in pilot plant UASB reactor. Wat. Sci. Technol. 25(7): 213–222Google Scholar
  62. Touzel JP, Petroff D & Albagnac G (1985) Isolation and characterization of a new thermophilicMethanosarcina, the strain CHTI 55. Syst. Appl. Microbiol. 6: 66–71Google Scholar
  63. Uemura S & Harada H (1993) Microbial characteristics of methanogenic sludge consortia developed in thermophilic UASB reactors. Appl. Microbiol. Biotechnol. 39: 654–660CrossRefGoogle Scholar
  64. Uemura S & Harada H (1993) Inorganic composition and microbial characteristics of methanogenic granular sludge grown in a thermophilic upflow anaerobic sludge blanket reactor. Appl. Microbiol. Biotechnol. 43: 358–364CrossRefGoogle Scholar
  65. Ugurlu A & Forster CF (1992) The impact of shock loadings on the performance of thermophilic anaerobic filters with porous and non-porous packings. Biores. Technol. 39: 23–30CrossRefGoogle Scholar
  66. Vanderhaegen B, Ysebaert E, Favere K, VanWambeke M, Peeters T, Panic V, Vandenlangenbergh & Verstraete W (1992) Acidogenesis in relation to in-reactor granule yield. Wat. Sci. Technol. 25: 75–81Google Scholar
  67. VanLier JB, Boersma F, Debets MMWH & Lettinga G (1994) High-Rate thermophilic anaerobic wastewater treatment in compartmentalized upflow reactors. Wat. Sci. Technol. 30(12): 251–261Google Scholar
  68. VanLier JB, Hulsbeek J, Stams AJM & Lettinga G (1993a) Temperature susceptibility of thermophilic methanogenic sludge: implications for reactor start-up and operation. Biores. Technol. 43: 227–235CrossRefGoogle Scholar
  69. Van Lier JB, Groeneveld N & Lettinga G (1996) Characteristics and development of thermophilic methanogenic sludge in compartmentalized upflow reactors. Biotechnol. Bioeng. (Accepted)Google Scholar
  70. Van Lier JB, Grolle KCF & Lettinga G (1991) Anaerobic digestion at 75°C. In: Poster-Abstract of the Sixth International Symposium on Anaerobic Digestion, Sao Paulo, Brazil, May 12–16, p 163Google Scholar
  71. VanLier JB, Grolle KCF, Frijters CTMJ, Stams AJM & Lettinga G (1993b) Effects of acetate, propionate and butyrate on the thermophilic anaerobic degradation of propionate by methanogenic sludge and defined cultures. Appl. Environ. Microbiol. 59: 1003–1011PubMedGoogle Scholar
  72. VanLier JB, Grolle KCF, Stams AJM, Conway de Macario E & Lettinga G (1992) Start-up of a thermophilic Upflow Anaerobic Sludge Bed (UASB) reactor with mesophilic granular sludge. Appl. Microbiol. Biotechnol. 37: 130–135PubMedCrossRefGoogle Scholar
  73. VanLier JB, Macario AJL, Conway de Macario E & Lettinga G (1993c) Permanent increase of the process temperature of mesophilic Upflow Anaerobic Sludge Bed (UASB) reactors to 46, 55, 64 and 75°C. In: Dalton CS & Wukasch RF (Eds), Proceedings of 47th Industrial Waste Conference, May 1992, Lafayette Indiana, USA (pp 445–459) Lewis Publishers, Chelsea Michigan, USAGoogle Scholar
  74. VanLier JB, Sanz Martin JL & Lettinga G (1996) Effect of temperature on the anaerobic thermophilic conversion of volatile fatty acids by dispersed and granular sludge. Wat. Res. 30: 199–207CrossRefGoogle Scholar
  75. Varel VH, Isaacson HR & Bryant MP (1977) Thermophilic methane production from cattle waste. Appl. Environ. Microbiol. 33: 298–307PubMedGoogle Scholar
  76. Weber H, Kulbe KD, Chmiel H & Trösch W (1984) Microbial acetate conversion to methane: kinetics, yields and pathways in a two-step digestion process. Appl. Microbiol. Biotechnol. 19: 224–228CrossRefGoogle Scholar
  77. Westermann P (1994) The effect of incubation temperature on steady-state concentrations of hydrogen and volatile fatty acids during anaerobic degradation in slurries from wetland sediments. FEMS Microbiol. Ecol 13: 295–302CrossRefGoogle Scholar
  78. Wiegant WM (1986) Thermophilic anaerobic digestion for waste and wastewater treatment. PhD. thesis, Department of Environmental Technology, Agricultural University, Wageningen, The NetherlandsGoogle Scholar
  79. Wiegant WM, Claassen JA & Lettinga G (1985) Thermophilic anaerobic digestion of high strength wastewaters. Biotechnol. Bioeng. 27: 1374–1381PubMedCrossRefGoogle Scholar
  80. Wiegant WM & DeMan AWA (1986) Granulation of biomass in thermophilic anaerobic sludge blanket reactors treating acidified wastewaters. Biotechnol. Bioeng. 28: 718–727PubMedCrossRefGoogle Scholar
  81. Wiegant WM, Hennink M & Lettinga G (1986) Separation of the propionate degradation to improve the efficiency of thermophilic anaerobic treatment of acidified wastewaters. Wat. Res. 4: 517–524CrossRefGoogle Scholar
  82. Wiegant WM & Lettinga G (1985) Thermophilic anaerobic digestion of sugars in upflow anaerobic sludge blanket reactors. Biotechnol. Bioeng. 27: 1603–1607PubMedCrossRefGoogle Scholar
  83. Yang M, Ishihara T, Okada M, Nagai S & Sunahara H (1992) Stability and performance of thermophilic anaerobic fixed-bed reactor packed with a saddle-shaped slag biocarrier. Environ. Technol. 13: 671–678Google Scholar
  84. Zeeman G, Wiegant WM, Koster-Treffers ME & Lettinga G (1985) The influence of the total ammonia concentration on the thermophilic digestion of cow manure. Agr. Wastes 14: 19–35CrossRefGoogle Scholar
  85. Zehnder AJB, Huser BA, Brock TD & Wuhrmann K (1980) Characterization of an acetate-decarboxylating non-hydrogen oxidizing methane bacterium. Arch. Microbiol. 124: 1–11PubMedCrossRefGoogle Scholar
  86. Zehnder AJB, Ingvorsen K & Marti T (1982) In: Hughes DE et al. (Eds), Anaerobic Digestion 1981 (pp 45–68). Elsevier Biomedical Press, AmsterdamGoogle Scholar
  87. Zinder SH (1986) Thermophilic waste treatment systems. In: Brock TD (Ed) Thermophiles: general, molecular and applied biology (pp 257–277). Wiley-Interscience, New YorkGoogle Scholar
  88. Zinder SH (1990) Conversion of acetic acid to methane by thermophiles. FEMS Microbiol. Rev. 75: 125–138CrossRefGoogle Scholar
  89. Zinder SH, Anguish T & Cardwell SC (1984) Effects of temperature on methanogenesis in a thermophilic (58°C) anaerobic digester. Appl. Environ. Microbiol. 47: 808–813PubMedGoogle Scholar
  90. Zinder SH, Anguish T & Lobo AL (1987) Isolation and characterization of a thermophilic acetotrophic strain ofMethanothrix. Arch. Microbiol. 146: 315–322CrossRefGoogle Scholar
  91. Zinder SH & Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 54: 263–272CrossRefGoogle Scholar
  92. Zinder SH & Mah RA (1979) Isolation and characterization of a thermophilic strain ofMethanosarcina unable to use H2−CO2 for methanogenesis. Appl. Environ. Microbiol. 38: 996–1008PubMedGoogle Scholar
  93. Zinder SH, Sowers KR & Ferry JG (1985)Methanosarcina thermophila sp. nov. a thermophilic, acetotrophic, methaneproducing bacterium. Int. J. Syst. Bact. 35: 522–523CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Jules B. van Lier
    • 1
  1. 1.Department of Environmental TechnologyWageningen Agricultural UniversityWageningenthe Netherlands

Personalised recommendations