Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Abundance enhancements of silicon to iron in solar energetic particles and their implications

  • 30 Accesses

  • 3 Citations

Abstract

Differential energy spectra of low abundant elements between silicon and iron of energetic solar particles (SEP) in the August 4, 1972 event were measured in the energy region of 10 to 40 MeV amu−1 using rocket-borne Lexan detectors. The relative abundances of elements were determined and abundance enhancements, i.e., SEP/photospheric ratios, and their energy dependence were derived in 10–40 MeV amu−1 interval. It is found that there are four types of abundance enhancements as a function of energy as follows: (a) silicon, iron, and calcium show fairly strong energy dependence which decreases with increasing energy and at 20–40 MeV amu−1 reaches photospheric values; (b) in case of sulphur enhancement factors are independent of energy and the values are close to unity; (c) argon shows energy independent enhancements of about 3 to 4 in 10–40 MeV amu−1; (d) titanium and chromium show weakly energy-dependent, but very high abundance enhancement factor of about 10 to 40. These features are to be understood in terms of the atomic properties of these elements and on the physical conditions in the accelerating region. These are important not only for solar phenomena but also to gain insight into the abundance enhancements of cosmic-ray heavy nuclei.

This is a preview of subscription content, log in to check access.

References

  1. Bertsch, D. L., Biswas, S., and Reames, D. V.: 1974,Solar Phys. 39, 479.

  2. Bertsch, D. L., Biswas, S., Fichtel, C. E., Pellerin, C. J., and Reames, D. V.: 1973,Solar Phys. 31, 247.

  3. Bertsch, D. L., Fichtel, C. E., and Reames, D. V.: 1972,Astrophys. J. 171, 169.

  4. Biswas, S. and Fichtel, C. E.: 1964,Astrophys. J. 139, 941.

  5. Biswas, S. and Fichtel, C. E.: 1965,Space Sci. Rev. 4, 709.

  6. Biswas, S., Durgaprasad, N., and Vahia, M. N.: 1983,Solar Phys.,8, 163.

  7. Brenema, H. R. and Stone, E.C.: 1985,Astrophys. J. 299, L57.

  8. Cook, W. R., Stone, E. C. and Vogt, R. E.: 1979,Proc. 16th ICRC,10, 265.

  9. Cook, W. R., Stone, E. C., and Vogt, R. E.: 1984,Astrophys. J.,279, 827.

  10. Crawford, H. J., Price, P. B., Cartwright, B. G., and Sullivan, J. D.: 1975,Astrophys. J. 195, 213.

  11. Durgaprasad, N., Fichtel, C. E., Guss, D. E., and Reames, D. V.: 1968,Astrophys. J. 154, 307.

  12. Durgaprasad, N., Nevatia, J., and Biswas, S.: 1982,Nucl. Inst. Methods 199, 573.

  13. Fan, C. Y., Gloeckler, G., and Hovestadt, D.: 1984,Space Sci. Rev. 38, 143.

  14. Fleischer, R. L., Price, P. B., and Walker, R. M.: 1975,Nuclear Tracks in Solids, Univ. of California Press, California.

  15. Grevesse, N.: 1976.Trans. of IAU XVI B 116.

  16. Grevesse, N.: 1984,Phys. Scripta T8, 49.

  17. Henke, R. P. and Benton, E. V.: 1981,Nucl. Inst. Methods 97, 483.

  18. Hirayama, T.: 1971,Solar Phys. 19, 384.

  19. Lambert, D. L.: 1967,Observatory 87, 228.

  20. Lambert, D. L.: 1968,Monthly Notices Roy. Astron. Soc. 138, 79.

  21. Luhn, A., Hovestadt, D., Klecker, B., Scholer, M., Gloeckler, G., Ipavich, F. M., Galvin, A. B., Fan, C. Y., and Fisk, L. A.: 1985,Proc. 19th ICRC 4, 241.

  22. McGuire, R. E., von, Rosenvinge, T. T., and McDonald, F. B.: 1986,Astrophys. J. 301, 938.

  23. Meyer, J. P.: 1985,Astrophys. J. Suppl. 57, 151.

  24. Meyer, J. P. and Reeves, H.: 1977,Proc. 15th ICRC 2, 137.

  25. Pagel, B. E. J.: 1973,Space Sci. Rev. 15, 1.

  26. Pagel, B. E. J.: 1979, in L. H. Ahrens (ed.)Origin and Distribution of Elements, Pergamon Press, Oxford, p. 79.

  27. Price, P. B. and Fleischer, R. L.: 1971,Ann. Rev. Nucl. Sci. 21, 295.

  28. Ross, J. E. and Aller, L. H.: 1976,Science 191, 1223.

  29. Simpson, J. A.: 1983,Ann. Rev. Nucl. Part. Sci. 33, 323.

  30. Švestka, Z.: 1981, in E. R. Priest (ed.)Solar Flare Magnetohydrodynamics, Gordon and Breach Sci. Publ., New York, p. 47.

  31. Vahia, M. N.: 1983, Ph.D. Thesis, University of Bombay.

  32. Vahia, M. N.: 1987,Astron. Astrophys. 173, 361.

  33. Vahia, M. N.: 1988,Astron. Astrophys. (in press).

  34. Vahia, M. N. and Biswas, S.: 1981, in M. M. Shapiro (ed.),Composition and Origin of Cosmic Rays, D. Reidel Publ. Co., Dordrecht, Holland, p. 155.

  35. Vahia, M. N., Biswas, S., and Durgaprasad, N.: 1985,Proc. 19th ICRC 4, 221.

  36. Vaisberg, O. L. and Zastenker, G. N.: 1976,Space Sci. Rev. 19, 687.

  37. Webber, W. R.: 1982,Astrophys. J. 199, 482.

Download references

Author information

Additional information

on leave from Tata Institute of Fundamental Research, Bombay, India.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vahia, M.N., Biswas, S. & Durgaprasad, N. Abundance enhancements of silicon to iron in solar energetic particles and their implications. Astrophys Space Sci 149, 241–254 (1988). https://doi.org/10.1007/BF00639794

Download citation

Keywords

  • Silicon
  • Energy Dependence
  • Enhancement Factor
  • Energetic Particle
  • Heavy Nucleus