Advertisement

Wood Science and Technology

, Volume 3, Issue 2, pp 167–174 | Cite as

The torsion of an orthotropic rod in the theory of creep

  • N. S. Bhatnagar
  • S. K. Gupta
  • R. P. Gupta
Article

Summary

The analysis of the torsion problem for a rod of orthotropic material is presented. The analysis is based on Norton's law generalised for a multi-axial state of stress for an orthotropic medium. The components of displacement have been assumed to be similar to those given by the theory of elasticity. The resultant stress τ at the periphery of the rod has been assumed to be a function of θ. An expression giving the twist as a function of the time has also been derived.

Keywords

Resultant Stress Torsion Problem Orthotropic Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammmenfassung

Die Frage der Torsion eines Stabes aus orthotropem Material wird analysiert. Die Analyse erfolgt mit Hilfe des Nortonschen Gesetzes, in Verallgemeinerung für den Fall einer mehrachsigen Beanspruchung eines orthotropen Materials. Für die Verformungskomponenten wurde angenommen, daß sie ähnlich jenen in der Elastizitätstheorie seien. Für die resultiernde Spannung τ in der Außenzone des Stabes wurde ferner angenommen, daß sie eine Funktion von θ darstelle. Eine Beziehung, welche die Verdrehung als Funktion der Zeit darstellt, wurde abgeleitet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhatnagar, N. S.: Torsion of Solid Cylindrical Rod of Circular Cross-section in the Theory of Creep. Res. J. University of Roorkee, India 1962.Google Scholar
  2. —, andR. P. Gupta: On the Constitntive Equations of the Orthotropic Theory of Creep. Wood Science and Technology.1 (1967) 142/148.Google Scholar
  3. Finnie, I., andW. R. Heller: Creep of Engineering Materials. New York 1959. McGraw-Hill.Google Scholar
  4. Gupta, R. P.: Some Problems on Theory of Creep. Ph. D., Thesis, University of Roorkee, India 1967.Google Scholar
  5. Hoff, N. J.: Mechanics Applied to Creep Testing. Presented at the Annual Meeting of the Society for Experimental Stress Analysis, Albany, N. Y. 1952.Google Scholar
  6. Love, A. E. H.: Mathematical Theory of Elasticity, Cambride 1927: University Press.Google Scholar
  7. Marin, J.: Engineering Materials. New York 1952: Prentice Hall Inc.Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • N. S. Bhatnagar
    • 1
  • S. K. Gupta
    • 1
  • R. P. Gupta
    • 1
  1. 1.University of RoorkeeIndia

Personalised recommendations