Biology and Fertility of Soils

, Volume 2, Issue 1, pp 29–34

Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots

  • J. L. Morel
  • M. Mench
  • A. Guckert


The pectic nature of root mucilages suggests a hypothetical action of these substances on heavy metal flux into the root. In this study the existence of relations between heavy metals and root mucilages were verified and quantified. In order to obtain substantial amounts of pure root mucilages, two methods of collection were developed, using: (1) maize plants grown in the field and (2) hydroponic axenic cultures. The study of mucilage-metal binding was conducted using the dialysis method, which was developed in a previous work. Results show that root mucilages are able to bind metals. The importance of the binding depends on the nature of the cation, following the order Pb > Cu > Cd. These reactions could be due to exchange processes involving mucilage cations (Ca2+, Mg2+) and heavy metals. The role of mucilages on the retention of heavy metals in the rhizosphere is also discussed.

Key words

Root mucilages Maize Lead Copper Cadmium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bitter T, Muir HM (1962) A modified uronic acid carbazole reaction. Anal Biochem 4:330–334Google Scholar
  2. Blaser P, Flühler H, Polomski J (1980) Metal binding properties of leaf litter extract. Soil Sci Am J 44:709–716Google Scholar
  3. Brains EA (1969) The mucilagenous layer of citrus roots. Its delineation in the rhizosphere and removal from roots. Plant and Soil 30:105–108Google Scholar
  4. Chaboud A (1983) Isolation, purification and chemical composition of maize root cap slime. Plant and Soil 73:395–402Google Scholar
  5. Cortez J, Billes G (1982) Role des ions calcium dans la formation du mucigel deZea mays. Oecol plant 17:67–68Google Scholar
  6. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356Google Scholar
  7. Floyd RA, Ohlrogge AJ (1970) Gel formation on nodal root surfaces ofZea mays. I. Investigations on the gel composition. Plant and Soil 33:341–343Google Scholar
  8. Foster RC (1982) Fine structure of mucigel. New Phytol 91:727–740Google Scholar
  9. Guckert A, Breisch H, Reisinger O (1975) Interface sol-racine: I. Etude au microscope électronique des relations mucigelargiles-microorganismes. Soil Biol Biochem 7:241–250Google Scholar
  10. Horst WJ, Wagner A, Marschner H (1982) Mucilage protects meristems from aluminium injury. Z Pflanzenphysiol 105:435–444Google Scholar
  11. Jarvis MC (1984) Structure and properties of pectin gels in the plant cell wall. Plant Cell Environ 7:153–164Google Scholar
  12. Jenny H, Grossenbacher K (1963) Root soil boundary zone as seen by electron microscope. Soil Sci Soc Am Proc 27:273–277Google Scholar
  13. Jones DD, Morre DJ (1967) Golgi apparatus mediated polysaccharide secretion by outer root cap cells ofZea mays. II. Isolation and characterization of the secretory product. Z Pflanzenphysiol 56:166–169Google Scholar
  14. Leppard GG, Ramamoorthy S (1975) The aggregation of wheat rhizosphere fibrils and the accumulation of soil bound cations. Can J Bot 53:1729–1735Google Scholar
  15. Lowry HO, Rosebrough JN, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  16. Makridou C (1977) Complexation de quelques ion métalliques par les acides galacturonique, polygalacturonique et cetoglutarique. Thèse 3ème cycle Univ Lyon I, p 95Google Scholar
  17. Mench M, Morel JL, Guckert A (1985) Liaison du cadmium avec la fraction macromoléculaire soluble des exsudats racinaires du mais (Zea mays L.). C R Acad Sci 301:379–382Google Scholar
  18. Mollenhauer HH, Whaley WG, Leech JH (1961) A function of the Golgi apparatus in outer root cap cells. J Ultrastruct Res 5:193–200Google Scholar
  19. Morel JL (1985) Contribution a l'étude des transferts de métaux lourds dans le système sol-plante: le role des mucilages racinaires. Thèse d'Etat, Institut National Polytechnique de Lorraine Nancy, pp 172Google Scholar
  20. Morel JL, Guckert A, Mench M, Chavanon M (1983) Etude des interactions entre les product d'exsudation racinaire et les métaux lourds. I. Recherche d'une méthode de mesure de la capacité de liaison métallique des exsudats. Oecol Plant 4:363–376Google Scholar
  21. Nambiar EKS (1976) Uptake of65Zn from dry soil by plants. Plant Soils 44:267–271Google Scholar
  22. Nye PH (1981) Changes of pH across the rhizosphere induced by roots. Plant and Soil 61:7–26Google Scholar
  23. Paull RE, Johnson CM, Jones RL (1975) Studies on the secretion of maize root cap slime. I. Some properties of the secreted polymer. Plant Physiol 56:300–306Google Scholar
  24. Rovira AD (1969) Diffusion of carbon compounds away from wheat root. Aust J Biol Sci 22:1287–1290Google Scholar
  25. Rougier M (1971) Etude cytochimique de la sécrétion des polysaccharides végétaux à l'aide d'un matérial de choix: les cellules de la coiffe doZea mays. J Microsc 10:67–82Google Scholar
  26. Trolldenier G, Hecht-Buchholtz CH (1984) Effect of aeration status of nutrient solution on microorganisms, mucilage and ultrastructure of wheat roots. Plant and Soil 80:381–390Google Scholar
  27. Wright K, Northcote DH (1976) The relationship of root cap slimes to pectins. Biochem J 139:759–763Google Scholar
  28. Zunino H, Martin JP (1977) Metal-binding organic molecules in soil. 2: characterization of the maximum binding ability of the macromolecules. Soil Sci 123:188–202Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. L. Morel
    • 1
  • M. Mench
    • 1
  • A. Guckert
    • 1
  1. 1.Department of Plant ScienceEcole Nationale Supérieure d'Agronomie et des Industries AlimentairesVandoeuvreFrance

Personalised recommendations