Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Superplasticity in ceramics

  • 421 Accesses

  • 116 Citations

Abstract

It is now recognized that superplasticity is a potential deformation process in ceramics. This review summarizes the major characteristics of superplasticity and examines the reports of both transformation and structural superplasticity in ceramic and other non-metallic materials. It is shown that there are both similarities to and differences from metals. Similarities include the variation of strain rate with stress and grain size, but an important difference is the necessity to consider the role of intergranular glassy phases in ceramics. Superplasticity is also important in intermetallic compounds, and in geological materials where there is evidence for superplastic deformation both in laboratory experiments and in natural deformation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    T. G. Langdon,Met. Sci. 16 (1982) 175.

  2. 2.

    C. E. Pearson,J. Inst. Metals,54 (1934) 111.

  3. 3.

    O. D. Sherby andJ. Wadsworth, “Superplasticity in Aerospace,” edited by H. C. Heikkenen and T. R. McNelley (Metallurgical Society of AIME, Warrendale, Pennsylvania, 1988) p. 3.

  4. 4.

    G. D. Bengough,J. Inst. Metals 7 (1912) 123.

  5. 5.

    Idem, ibid. 8 (1912) 180.

  6. 6.

    W. Rosenhain, J. L. Haughton andK. E. Bingham,ibid. 23 (1920) 261.

  7. 7.

    C. H. M. Jenkins,ibid. 40 (1928) 21.

  8. 8.

    A. Sauveur,Iron Age 113 (1924) 581.

  9. 9.

    N. E. Paton andC. H. Hamilton (eds) “Superplastic Forming of Structural Alloys,” (Metallurgical Society of AIME, Warrendale, Pennsylvania, 1982).

  10. 10.

    B. Baudelet andM. Suéry (eds) “Superplasticity” (C.N.R.S., Paris, 1985).

  11. 11.

    R. Pearce andL. Kelly (eds) “Superplasticity in Aerospace-Aluminium” (SIS, Cranfield, UK, 1985).

  12. 12.

    S. P. Agrawal, (ed) “Superplastic Forming,” (ASM, Metals Park, Ohio, 1985).

  13. 13.

    H. C. Heikkenen andT. R. McNelley (eds) “Superplasticity in Aerospace” (Metallurgical Society of AIME, Warrendale, Pennsylvania, 1988).

  14. 14.

    K. A. Padmanabhan andG. J. Davies, “Superplasticity”, (Springer-Verlag, Berlin, 1980).

  15. 15.

    I. I. Novikov andV. K. Portnoy, “Sverkhplastichnost' Splavov s Ul'tramelkim Zernom,” (Metallurgiya, Moscow, 1981).

  16. 16.

    O. A. Kaibyshev, ‘Sverkhplastichnost’ Promyshlennykh Splavov” (Metallurgiya, Moscow, 1984).

  17. 17.

    B. P. Kashyap, A. Arieli andA. K. Mukherjee,J. Mater. Sci. 20 (1985) 2661.

  18. 18.

    C. Liu, “Superplasticity of Metals” (Shanghai Jiao Tong University Press, Shanghai, 1989).

  19. 19.

    F. Wakai, S. Sakaguchi andY. Matsuno,Adv. Ceram. Mater. 1 (1986) 259.

  20. 20.

    F. Wakai, S. Sakaguchi, K. Kanayama, H. Kato andH. Onishi, “Ceramic Materials and Components for Engines,” edited by W. Bunk and H. Hausner (Deutsche Keramische Gesellschaft, Bad Honnef, 1986) p. 315.

  21. 21.

    J. W. Edington, K. N. Melton andC. P. Cutler,Prog. Mater. Sci. 21 (1976) 61.

  22. 22.

    T. G. Langdon,Metall. Trans. 13A (1982) 689.

  23. 23.

    D. A. Woodford,Trans. ASM 62 (1969) 291.

  24. 24.

    E. W. Hart,Acta Met. 15 (1967) 351.

  25. 25.

    J. W. Hutchinson andK. W. Neale,ibid. 25 (1977) 839.

  26. 26.

    U. F. Kocks, J. J. Jonas andH. Mecking,ibid. 27 (1979) 419.

  27. 27.

    F. A. Nichols,ibid. 28 (1980) 663.

  28. 28.

    W. R. Cannon andT. G. Langdon,J. Mater. Sci. 23 (1988) 1.

  29. 29.

    J. L. Hart andA. C. D. Chaklader,Mater. Res. Bull. 2 (1967) 521.

  30. 30.

    A. C. D. Chaklader,Proc. Brit. Ceram. Soc. 15 (1970) 225.

  31. 31.

    P. E. D. Morgan, “Ultra Fine-Grain Ceramics,” edited by J. J. Burke, N. L. Reed and V. Weiss (Syracuse University Press, Syracuse, New York, 1970) p. 251.

  32. 32.

    C. A. Johnson, R. C. Bradt andJ. H. Hoke,J. Amer. Ceram. Soc. 58 (1975) 37.

  33. 33.

    C. A. Johnson, J. R. Smyth, R. C. Bradt andJ. H. Hoke, “Deformation of Ceramic Materials,” edited by R. C. Bradt and R. E. Tressler (Plenum, New York, 1975) p. 443.

  34. 34.

    J. R. Smyth, R. C. Bradt andJ. H. Hoke,J. Amer. Ceram. Soc. 58 (1975) 381.

  35. 35.

    Idem, J. Mater. Sci. 12 (1977) 1495.

  36. 36.

    L. A. Winger, R. C. Bradt andJ. H. Hoke,J. Amer. Ceram. Soc. 63 (1980) 291.

  37. 37.

    P. C. Panda, R. Raj andP. E. D. Morgan,ibid. 68 (1985) 522.

  38. 38.

    R. Raj, R. L. Tsai, J. G. Wang andC. K. Chyune, “Deformation of Ceramic Materials II,” edited by R. E. Tressler and R. C. Bradt (Plenum, New York, 1984) p. 353.

  39. 39.

    P. E. Hart, R. B. Atkin andJ. A. Pask,J. Amer. Ceram. Soc. 53 (1970) 83.

  40. 40.

    P. E. Hart andJ. A. Pask ibid. 54 (1971) 315.

  41. 41.

    S. E. Bold andG. W. Groves,J. Mater. Sci. 13 (1978) 611.

  42. 42.

    C. Carry andA. Mocellin, “Superplasticity,” edited by B. Baudelet and M. Suéry (CNRS, Paris, 1985) p. 16.1.

  43. 43.

    J.-G. Wang andR. Raj,J. Amer. Ceram. Soc. 67 (1984) 399.

  44. 44.

    Idem, ibid. 67 (1984) 385.

  45. 45.

    A. G. Evans, J. R. Rice andJ. P. Hirth,ibid. 63 (1980) 368.

  46. 46.

    T. E. Chung andT. J. Davies,J. Nucl. Mater. 79 (1979) 143.

  47. 47.

    Idem, Acta Met. 27 (1979) 627.

  48. 48.

    Idem, “Creep and Fracture of Engineering Materials,” edited by B. Wilshire and D. R. J. Owen (Pineridge, Swansea, 1981) p. 395.

  49. 49.

    J. Crampon andB. Escaig,J. Amer. Ceram. Soc. 63 (1980) 680.

  50. 50.

    J. D. Fridez, C. Carry andA. Mocellin, “Structure and Properties of MgO and Al2O3 Ceramics,” edited by W. D. Kingery, Advances in Ceramics, Vol. 10 (American Ceramic Society, Columbus, Ohio, 1984) p. 720.

  51. 51.

    C. Carry andA. Mocellin, “Deformation of Ceramics II,” edited by R. E. Tressler and R. C. Bradt (Plenum, New York, 1984) p. 391.

  52. 52.

    K. R. Venkatachari andR. Raj,J. Amer. Ceram. Soc. 69 (1986) 135.

  53. 53.

    F. Wakai, S. Sakaguchi andH. Kato,Yogyo-Kyokai-Shi 94 (1986) 721.

  54. 54.

    F. Wakai, H. Kato, S. Sakaguchi andN. Murayama ibid. 94 (1986) 1017.

  55. 55.

    C. Carry andA. Mocellin,J. Amer. Ceram. Soc. 69 (1986) C-215.

  56. 56.

    R. Duclos andJ. Crampon,J. Mater. Sci. Lett. 6 (1987) 905.

  57. 57.

    C. Carry andA. Mocellin,Ceramics Int. 13 (1987) 89.

  58. 58.

    C. Carry andA. Mocellin, “High Tech Ceramics,” edited by P. Vincenzi (Elsevier, Amsterdam, 1987) p. 1043.

  59. 59.

    F. Wakai andH. Kato,Adv. Ceram. Mater. 3 (1988) 71.

  60. 60.

    T. G. Nieh, C. M. McNally andJ. Wadsworth,Scripta Met. 22 (1988) 1297.

  61. 61.

    T. G. Nieh, C. M. McNally andJ. Wadsworth,ibid. 23 (1989) 457.

  62. 62.

    R. Duclos, J. Crampon andB. Amana,Acta Met. 37 (1989) 877.

  63. 63.

    C. Carry andA. Mocellin,Proc. Brit. Ceram. Soc. 33 (1983) 101.

  64. 64.

    W. R. Cannon, “Structure and Properties of MgO and Al2O3 Ceramics”, edited by W. D. Kingery (American Ceramic Society, Columbus, Ohio, 1984) p. 741.

  65. 65.

    J. Crampon,Acta Met. 28 (1980) 123.

  66. 66.

    F. A. Mohamed, M. M. I. Ahmed andT. G. Langdon,Metall. Trans. 8A (1977) 933.

  67. 67.

    T. G. Langdon, “Dislocations and Properties of Real Materials” (Institute of Metals, London, 1985) p. 221.

  68. 68.

    T. G. Langdon, “Superplastic Forming of Structural Alloys”, edited by N. E. Paton and C. H. Hamilton (Metallurgical Society of AIME, Warrendale, Pennsylvania, 1982) p. 27.

  69. 69.

    C. Carry, “Proceedings of the Materials Research Society International Meeting on Advanced Materials” (Materials Research Society, Pittsburgh, 1989)7, p. 199.

  70. 70.

    F. F. Lange, H. Shubert, N. Claussen andM. Rühle,J. Mater. Sci. 21 (1986) 768.

  71. 71.

    F. Wakai,Bull. Ceram. Soc. Jpn 22 (1987) 844.

  72. 72.

    Idem, J. Jpn Soc. Tech. Plasticity 29 (1988) 255.

  73. 73.

    Idem, Tetsu-to-Hagane 75 (1989) 389.

  74. 74.

    S. Hanada, T. Sato, S. Watanabe andO. Izumi,Jpn Inst. Metals. 45 (1981) 1293.

  75. 75.

    V. K. Sikka, “High-Temperature Ordered Intermetallic Alloys II”, edited by N. S. Stoloff, C. C. Koch, C. T. Liu and O. Izumi (Materials Research Society, Pittsburgh, 1987)81 p. 487.

  76. 76.

    M. S. Kim, S. Hanada, S. Watanabe andO. Izumi,J. Jpn Inst. Metals 52 (1988) 1020.

  77. 77.

    Idem, Mater. Trans. JIM 30 (1989) 77.

  78. 78.

    R. N. Wright andV. K. Sikka,J. Mater. Sci. 23 (1988) 4315.

  79. 79.

    S. Mitao, Y. Kohsaka andC. Ouchi, “Proceedings of Strength and Deformation of Intermetallic Compounds”, (Japan Institute of Metals, Sendai, 1988) p. 24.

  80. 80.

    T. G. Nieh andW. C. Oliver,Scripta Met. 23 (1989) 851.

  81. 81.

    R. B. Gordon,J. Geophys. Res. 76 (1971) 1248.

  82. 82.

    C. G. Sammis andJ. L. Dein,ibid. 79 (1974) 2961.

  83. 83.

    S. H. White andR. J. Knipe,J. Geol. Soc. 135 (1978) 513.

  84. 84.

    E. M. Parmentier,Geophys. Res. Lett. 8 (1981) 143.

  85. 85.

    L. Ruff andH. Kanamori,Tectonophys. 99 (1983) 99.

  86. 86.

    J. P. Poirier,J. Geophys. Res. 87 (1982) 6791.

  87. 87.

    S. M. Schmid,Tectonophys. 31 (1976) T21.

  88. 88.

    S. M. Schmid, J. N. Boland andM. S. Paterson,ibid. 43 (1977) 257.

  89. 89.

    P. J. Vaughan andR. S. Coe,J. Geophys. Res. 86 (1981) 389.

  90. 90.

    S. White,Nature (Phys. Sci.) 234 (1971) 175.

  91. 91.

    A. M. Boullier andA. Nicholas, “Physics and Chemistry of the Earth”, edited by L. H. Ahrens (Pergamon, Oxford, 1975)9 p. 97.

  92. 92.

    A. M. Boullier andY. Gueguen,Contrib. Mineral. Petrol. 50 (1975) 93.

  93. 93.

    Y. Gueguen andA. M. Boullier, “The Physics and Chemistry of Minerals and Rocks”, edited by R. G. J. Sterns (Wiley, London, 1976) p. 19.

  94. 94.

    S. White,Tectonophys. 39 (1977) 143.

  95. 95.

    I. Allison, R. L. Barnett andR. Kerrich,ibid. 53 (1979) T41.

  96. 96.

    M. A. Etheridge andJ. C. Wilkie,ibid. 58 (1979) 159.

  97. 97.

    J. H. Behrmann,ibid. 115 (1985) 101.

  98. 98.

    J. H. Behrmann andD. Mainprice,ibid. 140 (1987) 297.

  99. 99.

    R. J. Twiss,Earth Planet. Sci. Lett. 33 (1976) 86.

  100. 100.

    P. Duval andL. Lliboutry,J. Glaciol. 31 (1985) 60.

  101. 101.

    L. Lliboutry andP. Duval,Ann. Geophys. 3 (1985) 207.

  102. 102.

    G. M. Pharr andM. F. Ashby,Acta Met. 31 (1983) 129.

  103. 103.

    R. Raj andC. K. Chyung,ibid. 29 (1981) 159.

  104. 104.

    W. R. Cannon andT. G. Langdon,J. Mater. Sci. 18 (1983) 1.

  105. 105.

    R. C. Gifkins andT. G. Langdon,Mater. Sci. Engng 36 (1978) 27.

  106. 106.

    Z.-R. Lin, A. H. Chokshi andT. G. Langdon,J. Mater. Sci. 23 (1988) 2712.

  107. 107.

    T. G. Langdon andR. L. Bell,Trans. AIME 242 (1968) 2479.

  108. 108.

    R. C. Gifkins,Metall. Trans. 7A (1976) 1225.

  109. 109.

    B. Kibbel andA. H. Heuer,J. Amer. Ceram. Soc. 69 (1986) 231.

  110. 110.

    R. E. Mistler andR. L. Coble,J. Appl. Phys. 45 (1974) 1507.

  111. 111.

    J. C. White andS. H. White,Tectonophys. 66 (1980) 35.

  112. 112.

    B. J. Kellett andF. F. Lange,J. Amer. Ceram. Soc. 69 (1986) C-172.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maehara, Y., Langdon, T.G. Superplasticity in ceramics. J Mater Sci 25, 2275–2286 (1990). https://doi.org/10.1007/BF00638018

Download citation

Keywords

  • Polymer
  • Grain Size
  • Laboratory Experiment
  • Intermetallic Compound
  • Deformation Process