Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Periodic solutions and their stability for the problem of gyrostat

  • 43 Accesses

  • 5 Citations

Abstract

The Hamiltonian function of the problem of gyrostat is written in terms of Deprit's transform. The periodic solutions, using Lie's transform, are given and the condition for their stability is carried out.

This is a preview of subscription content, log in to check access.

References

  1. Arkanjeleski, Y.: 1977,Lectures on the Dynamics of a Rigid Body, Moscow.

  2. Deprit, A.: 1967,Amer. J. Phys. 53, 1, 424.

  3. Euler, L.: 1785,Découverte d'une nouveau principe de méchanique, Mémoires de l'Acad. des Sci. de Berlin, Vol. 14, pp. 154–193.

  4. Hori, G.: 1966,Publ. Astron. Soc. Japan 18(4), 287.

  5. Lagrange, J.: 1888,Mécanique analytique, Gauthier-Villars, Paris.

  6. Levi-Civitá, T. and Amaldi, U.: 1927,Lezioni di Meccanica Razionale, Vol. II, Bologna.

  7. Markov, A. and Churkina, N.: 1985,Astron. Letters 11(8), 267.

  8. Poincaré, H.: 1892–1899,Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris (reprinted by Dover, New York, 1957).

  9. Poincaré, H.: 1905,Leçons de mécanique céleste, Vol. 1, Gauthier-Villars, Paris.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

El-Sabaa, F.M. Periodic solutions and their stability for the problem of gyrostat. Astrophys Space Sci 183, 199–213 (1991). https://doi.org/10.1007/BF00637719

Download citation

Keywords

  • Periodic Solution
  • Hamiltonian Function