European Journal of Clinical Pharmacology

, Volume 35, Issue 6, pp 651–656 | Cite as

4-quinolones inhibit biotransformation of caffeine

  • S. Harder
  • A. H. Staib
  • C. Beer
  • A. Papenburg
  • W. Stille
  • P. M. Shah


The pharmacokinetics of caffeine, including formation of its major metabolite paraxanthine in plasma, has been investigated in 12 healthy males (age 20–40 years) alone and during co-administration of the 4-quinolones ofloxacin, norfloxacin, pipemidic acid, ciprofloxacin, and enoxacin; ciprofloxacin and enoxacin were given in 3 different dose levels.

The naphthyridine derivative enoxacin and the pyrido-pyrimidine derivative pipemidic acid had caused marked inhibition of caffeine and paraxanthine metabolism, whereas the genuine quinolone derivatives norfloxacin and ciprofloxacin had little effect, and the pyrido-benzoxacine derivative ofloxacin had no detectable effect.

The different molecular and spatial structures of the compounds appear to be responsible for the differences in inhibitory potency.

Key words

caffeine quinolones paraxanthine enoxacin ciprofloxacin pipemidic acid norfloxacin drug interaction pharmacokinetics drug metabolism ofloxacin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnaud MJ (1984) Products of metabolism of caffeine. In: Dews PB (ed) Caffeine. Springer, Berlin Heidelberg New York Tokyo, pp 3–47Google Scholar
  2. 2.
    Beckmann J, Elsäßer W, Gundert-Remy U, Hertrampf R (1987) Enoxacin — a potent inhibitor of theophylline metabolism. Eur J Clin Pharmacol 33: 227–230Google Scholar
  3. 3.
    Bem JL, Mann RD (1988) Danger of interaction between ciprofloxacin and theophylline. Br Med J 296: 1131Google Scholar
  4. 4.
    Bonati M, Garattini S (1984) Interspecies comparison of caffeine disposition. In: Dews PB (ed) Caffeine. Springer, Berlin Heidelberg New York Tokyo, pp 48–56Google Scholar
  5. 5.
    Bozler G, van Rossum J (1982) Data analysis and evaluation techniques during drug development. G. Fischer, Stuttgart New York, p 207Google Scholar
  6. 6.
    Broughton LJ, Rogers HJ (1981) Decreased systemic clearance of caffeine due to cimetidine. Br J Clin Pharmacol 12: 103–108Google Scholar
  7. 7.
    Busby M, Lesko LJ (1987) Pharmacokinetic interaction between theophylline and chloramphenicol in rats. Drug Metab Dispos 15: 204–206Google Scholar
  8. 8.
    Campbell ME, Grant DM, Inaba T, Kalow W (1987) Biotransformation of caffeine, paraxanthine, theophylline, and theobromine by polycyclic aromatic hydrocarbon-inducible cytochrome P-450 in human liver microsomes. Drug Metabol Disp 15: 237–249Google Scholar
  9. 9.
    Christensen LK, Skovsted L (1969) Inhibition of drug metabolism by chloramphenicol. Lancet 2: 1397–1399Google Scholar
  10. 10.
    Dews PB (1984) Behavioral effects of caffeine. In: Dews PB (ed) Caffeine. Springer, Berlin Heidelberg New York Tokyo, pp 86–103Google Scholar
  11. 11.
    Fourtillan JB, Granier J, Saint-Salvi B, Salmon J, Surjus A, Tremblay D, Vincent Du Laurier M, Beck M (1986) Pharmacokinetics of ofloxacin and theophylline alone and in combination. Infection 14 [Suppl 1]: 67–69Google Scholar
  12. 12.
    Gregoire SL, Grasela TH, Freer JP, Tack KJ, Schentag JJ (1987) Inhibition of theophylline clearance by coadministered ofloxacin without alteration of theophylline effects. Antimicrob Agents Chemother 31: 375–378Google Scholar
  13. 13.
    Janknegt R (1986) Fluorinated quinolones. A review of their mode of action, pharmacokinetics and clinical efficacy. Pharm Weekbl (Sci) 8: 1–21Google Scholar
  14. 14.
    Joeres R, Richter E (1987) Mexitilene and caffeine elimination. N Engl J Med 317: 117Google Scholar
  15. 15.
    Koup JR, Gibaldi M, McNamara P, Hilligoss DM, Colburn WA, Bruck E (1978) Interaction of chloramphenicol with phenytoin and phenobarbital. Clin Pharmacol Ther 24: 571–575Google Scholar
  16. 16.
    Kurobe N, Nakamura S, Shimizu M (1980) Metabolites of pipemidic acid in human urine. Xenobiotica 10: 7–46Google Scholar
  17. 17.
    Lelo A, Birkett DJ, Robson RA, Miners JO (1986) Comparative pharmacokinetics of caffeine and its primary demethylated metabolites paraxanthine, theobromine and theophylline in man. Br J Clin Pharmacol 22: 77–82Google Scholar
  18. 18.
    Lelo A, Miners JO, Robson RA, Birkett DJ (1986) Quantitative assessment of caffeine partial clearances in man. Br J Clin Pharmacol 22: 183–186Google Scholar
  19. 19.
    Maesen FPV, Teengs JP, Baur C, Davies BI (1984) Quinolones and raised plasma concentrations of theophylline. Lancet 2: 530Google Scholar
  20. 20.
    Neuman M (1988) Clinical pharmacokinetics of the newer antibacterial 4-quinolones. Clin Pharmacokinet 14: 96–121Google Scholar
  21. 21.
    Niki Y, Soejima R, Kawane H, Sumi M, Umeki S (1987) New synthetic quinolone antibacterial agents and serum concentration of theophylline. Chest 92: 663–669Google Scholar
  22. 22.
    Nix DE, DeVito JM, Whitbread MA, Schentag JJ (1987) Effect of multiple dose oral ciprofloxacin on the pharmacokinetics of theophylline and indocyanine green. J Antimicrob Chemother 19: 263–269Google Scholar
  23. 23.
    Nix DE, Schentag JJ (1988) The quinolones. An overview and comparative appraisal of their pharmacokinetics and pharmacodynamics. J Clin Pharmacol 28: 169–178Google Scholar
  24. 24.
    Rall TW (1987) The xanthines. In: Goodman LS, Gilman GA, Rall TW, Murad F (eds) The pharmacological basis of therapeutics. MacMillan, New York, p 592Google Scholar
  25. 25.
    Raoof S, Wollschläger C, Khan F (1985) Serum theophylline levels are increased by ciprofloxacin (BAY 9867), a new quinolone antibiotic. Chest 88: 32 (S)Google Scholar
  26. 26.
    Rietbrock N, Staib AH (1987) Gyrase-Hemmer: Unerwünschte zentralnervöse Wirkungen. Dtsch Med Wschr 112: 201Google Scholar
  27. 27.
    Robertson D, Curatolo PW (1984) The cardiovascular effects of caffeine. In: Dews PB (ed) Caffeine. Springer, Berlin Heidelberg New York Tokyo, pp 77–85Google Scholar
  28. 28.
    Schwartz J, Jauregui L, Lettieri J, Bachmann K (1988) Impact of ciprofloxacin on theophylline clearance and steady-state concentrations in serum. Antimicrob Agents Chemother 32: 75–77Google Scholar
  29. 29.
    Staib AH, Harder S, Mieke S, Beer C, Stille W, Shah PM, Frech K (1986) Gyrase-Hemmer können die Coffein-Elimination verzögern. Dtsch Med Wschr 111: 1500Google Scholar
  30. 30.
    Stille W, Harder S, Mieke S, Beer C, Shah PM, Frech K, Staib AH (1987) Decrease of caffeine elimination in man during co-administration of 4-quinolones. J Antimicrob Chemother 20: 729–734Google Scholar
  31. 31.
    Tsuji A, Sato H, Kume Y, Tamai I, Okezaki E, Nagata O, Kato H (1988) Inhibitory effects of quinolone antibacterial agents on y-aminobutyric acid binding to receptor sites in rat brain membranes. Antimicrob Agents Chemother 32: 190–194Google Scholar
  32. 32.
    Wijnands WJA, van Herwaarden CLA, Vree TB (1984) Enoxacin raises plasma theophylline concentrations. Lancet 1: 108–109Google Scholar
  33. 33.
    Wijnands WJA, Vree TB, van Herwaarden CLA (1986) The influence of quinolone derivatives on theophylline clearance. Br J Clin Pharmacol 22: 677–683Google Scholar
  34. 34.
    Zilly W, Caesar U, Staib AH, Heusler H, Richter E (1982) Die Elimination von Coffein bei Lebererkrankungen. In: Rietbrock N, Woodcock BG, Staib AH (eds) Methods in clinical pharmacology III: Theophylline and other methylxanthines. Vieweg, Braunschweig Wiesbaden, pp 69–75Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • S. Harder
    • 1
  • A. H. Staib
    • 1
  • C. Beer
    • 1
  • A. Papenburg
    • 1
  • W. Stille
    • 2
  • P. M. Shah
    • 2
  1. 1.Department of Clinical PharmacologyUniversity HospitalFrankfurt/MainGermany
  2. 2.Department of Infectious DiseasesUniversity HospitalFrankfurt/MainGermany

Personalised recommendations