Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Solar magnetic fields and convection

II: Magnetic diffusivity and flux concentration

  • 34 Accesses

  • 20 Citations

Abstract

The traditional model of solar magnetic fields is based on convection which dominates generally weak, diffuse fields and so tends to create increasingly tangled fields. Surplus fields must be eliminated by merging of opposite polarities; for example a solar dynamo of period≈10 yr requires fields to be reduced to a scale of<100 km or diffusivity to be increased by a factor of≈107 over molecular diffusivity. It is now shown that the true requirements of any diffuse-field theory are far more stringent, and that surplus fields must be eliminated within a single eddy period of 1 day (10 min) for the supergranules (granules). The reason is that during that period fresh fields are created with flux and energy comparable with those of the old fields. The numerical models of Weiss and Moss are used to confirm this result which is fatal to all diffuse-field theories. The basic error in these theories is found in the assumption that because heat and other passive properties of a fluid diffuse much faster in the presence of turbulence, passive magnetic fields should do likewise. The error is that the heat content of an eddy is not increased by the motion while the magnetic flux and energy are increased rapidly.

It is shown that the observed concentrations of surface fields into strengths of≳100 G cannot be accounted for by observed surface motions. Nor are they accounted for by the numerical models of turbulence of Weiss or Moss whatever values of the magnetic Reynolds number are assumed.

A detailed comparison is made between both small-scale and large-scale surface magnetic features and the predictions of the diffuse-field theory. The differences appear irreconcilable and the features only explicable in terms of the twisted flux-rope model.

This is a preview of subscription content, log in to check access.

References

  1. Allen, C. W.: 1973,Astrophysical Quantities, Univ. London.

  2. Babcock, H. W.: 1961,Astrophys. J. 133, 572.

  3. Beckers, J. M. and Schröter, E. H.: 1968,Solar Phys. 4, 142.

  4. Bumba, V. and Howard, R.: 1965,Astrophys. J. 141, 1502 and 1942.

  5. Bumba, V., Howard, R., Martres, M. J., and Soru-Iscovici, I.: 1968, in K. O. Kiepenheuer (ed.), ‘Structure and Development of Solar Active Regions’,IAU Symp. 35, 13.

  6. Elste, G.: 1973,Trans. IAU 15A, 130.

  7. Frazier, E. N. 1972,Solar Phys. 26, 130.

  8. Frazier, E. N. and Stenflo, J. O.: 1972,Solar Phys. 27, 330.

  9. Furth, H. P., Killeen, J., and Rosenbluth, M. N.: 1963,Phys. Fluids 6, 459.

  10. Harvey, K. L. and Martin, S. F.: 1973,Solar Phys. 32, 389.

  11. Howard, R.: 1972,Solar Phys. 25, 5.

  12. Howard, R. and Stenflo, J. O.: 1972,Solar Phys. 22, 402.

  13. Krause, F. and Rädler, K.-H.: 1971, in R. Howard (ed.), ‘Solar Magnetic Fields’,IAU Symp. 43, 770.

  14. Leighton, R. B.: 1964,Astrophys. J. 140, 1547.

  15. Leighton, R. B.: 1965, in R. Lüst (ed.) ‘Stellar and Solar Magnetic Fields’,IAU Symp. 22, 158.

  16. Leighton, R. B.: 1969,Astrophys. J. 156, 1.

  17. Lieghton, R. B., Noyes, R. W., and Simon, G. W.: 1962,Astrophys. J. 135, 474.

  18. Livingston, W. and Harvey, J.: 1969,Solar Phys. 10, 294.

  19. Livingston, W. and Harvey, J.: 1971, in R. Howard (ed.), ‘Solar Magnetic Fields’,IAU Symp 43, 51.

  20. Meyer, F., Schmidt, H. U., Weiss, N. O., and Wilson, P. R.: 1973, in R. Grant Athay (ed.), ‘Chromospheric Fine Structure’,IAU Symp. 56, 235; also preprint.

  21. Moss, D. L.: 1970,Monthly Notices Roy. Astron. Soc. 148, 173.

  22. Nakagawa, Y. and Priest, E. R.: 1973,Astrophys. J. 179, 949.

  23. Osterbrock, D. E.: 1961,Astrophys. J. 134, 347.

  24. Parker, E. N.: 1970,Astrophys. J. 162, 665.

  25. Parker, E. N.: 1971,Astrophys. J. 163, 279;164, 491.

  26. Parker, E. N.: 1973a,Astrophys. J. 180, 247.

  27. Parker, E. N.: 1973b,Astrophys. J. 186, 665.

  28. Parker, E. N.: 1974,Astrophys. J. 189, 563.

  29. Piddington, J. H.: 1971,Proc. Astron. Soc. Australia 2, 7.

  30. Piddington, J. H.: 1972,Solar Phys. 22, 3.

  31. Piddington, J. H.: 1973,Astrophys. Space Sci. 24, 259.

  32. Piddington, J. H.: 1974, in R. Grant Athay (ed.), ‘Chromospheric Fine Structure’,IAU Symp. 56, 269.

  33. Piddington, J. H.: 1975,Astrophys. Space Sci. 34, 347.

  34. Rädler, K.-H.: 1968,Z. Naturforsch. 23a, 1851.

  35. Schmidt, H. U.: 1968, in R. O. Kiepenheuer (ed.) ‘Structure and Development of Solar Active Regions’,IAU Symp. 35, 95.

  36. Schmidt, H. U.: 1974, in R. Grant Athay (ed.), ‘Chromospheric Fine Structure’,IAU Symp. 56, 35.

  37. Sheeley, N. R.: 1967,Solar Phys. 1, 171.

  38. Simon, G. W. and Weiss, N. O.: 1968,Z. Astrophys. 69, 435.

  39. Spitzer, L.: 1962,Physics of Fully Ionized Gases, Interscience, New York.

  40. Steenbeck, M. and Krause, F.: 1969,Astron. Nachr. 291, 49.

  41. Stenflo, J. O.: 1973,Solar Phys. 32, 41.

  42. Stix, M.: 1974, ‘Comments on the Solar Dynamo’, Habilitationsschrift, Univ. Göttingen.

  43. Vrabec, D.: 1971, in R. Howard (ed.), ‘Solar Magnetic Fields’,IAU Symp. 43, 329.

  44. Waldmeier, M.: 1960,Z. Astrophys. 49, 176.

  45. Weiss, N. O.: 1966,Proc. Roy. Soc. London A293, 310.

  46. Weiss, N. O.: 1971, in R. Howard (ed.), ‘Solar Magnetic Fields’,IAU Symp. 43, 757.

  47. Wilcox, J. M.: 1971,Publ. Astron. Soc. Pacific 83, 561.

  48. Wilson, P. R.: 1972,Solar Phys. 27, 363.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Piddington, J.H. Solar magnetic fields and convection. Astrophys Space Sci 35, 269–283 (1975). https://doi.org/10.1007/BF00636997

Download citation

Keywords

  • Convection
  • Reynolds Number
  • Magnetic Flux
  • Surface Motion
  • Solar Magnetic Field