Linguistics and Philosophy

, Volume 12, Issue 3, pp 325–346 | Cite as

A relational formulation of the theory of types

  • Reinhard Muskens


Artificial Intelligence Computational Linguistic Relational Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asser, G.: 1957, Theorie der logischen Auswahlfunktionen,Zeitschrift für mathematische Logik und Grundlagen der Mathematik 3, 30–68.Google Scholar
  2. Barwise, J.: 1981, Scenes and Other Situations,The Journal of Philosophy,78, 369–397.Google Scholar
  3. Barwise, J. and Cooper R.: 1981, Generalized Quantifiers and Natural Language,Linguistics and Philosophy 4, 159–219.Google Scholar
  4. Barwise, J. and Perry J.: 1983,Situations and Attitudes, MIT Press, Cambridge, Mass.Google Scholar
  5. Bennett, M.: 1974,Some Extensions of a Montague Fragment of English, UCLA, Dissertation. Van Benthem, J.F.A.K. and Doets, K.: 1983, Higher-Order Logic, in Gabbay & Guenthner [1983], pp. 275–329.Google Scholar
  6. Camap, R.: 1929,Abriβ der Logistik, Verlag von Julius Springer, Vienna.Google Scholar
  7. Church, A.: 1940, A Formulation of the Simple Theory of Types,The Journal of Symbolic Logic 5, 56–68.Google Scholar
  8. Engdahl, E.: 1980,The Syntax and Semantics of Questions in Swedish, University of Massachusetts at Amherst, Dissertation, reprinted asConstituent Questions: The Syntax and Semantics of Questions with Special Reference to Swedish, Reidel, Dordrecht 1985.Google Scholar
  9. Gabbay, D. and Guenthner, F. (eds.): 1983,Handbook of Philosophical Logic, Vol. 1, Reidel, Dordrecht.Google Scholar
  10. Gallin, D.: 1975,Intensional and Higher-Order Modal Logic, North-Holland, Amsterdam.Google Scholar
  11. Gazdar, G.: 1980, A Cross-Categorial Semantics for Coordination,Linguistics and Philosophy 3, 407–409.Google Scholar
  12. Groenendijk, J. and Stokhof, M.: 1984,Studies on the Semantics of Questions and the Pragmatics of Answers, Dissertation, University of Amsterdam.Google Scholar
  13. Henkin, L.: 1950, Completeness in the Theory of Types,The Journal of Symbolic Logic 15, 81–91.Google Scholar
  14. Hermes, H.: 1965,Eine Termlogik mit Auswahloperator, Springer, Berlin-Heidelberg-New York.Google Scholar
  15. Hilbert, D. and Bemays, P.: 1939,Grundlagen der Mathematik, Vol. 2, Springer, Berlin.Google Scholar
  16. Janssen, T.: 1984, Individual Concepts are Useful, in A. Landman and F. Veltman (eds.),Varieties of Formal Semantics, Foris, Dordrecht, 171–192.Google Scholar
  17. Kamp, H.: 1981, A Theory of Truth and Semantic Representation, reprinted in J. Groenendijk, T. Janssen and M. Stokhof (eds.),Truth, Interpretation and Information, Foris, Dordrecht, 1984, 277–322.Google Scholar
  18. Keenan, E. and Faltz, L.: 1978,Logical Types for Natural Language, UCLA Occasional Papers in Linguistics, 3. Kratzer, A.: 1977, WhatMust andCan Can and Must Mean,Linguistics and Philosophy 1.Google Scholar
  19. Landman, A.: 1986,Towards a Theory of Information, Dissertation, University of Amsterdam.Google Scholar
  20. Leisenring, A.C.: 1969,Mathematical Logic and Hilbert's ɛ-Symbol, Macdonald, London.Google Scholar
  21. Montague, R.: 1973, The Proper Treatment of Quantification in Ordinary English, reprinted in Montague [1974], pp. 247–270.Google Scholar
  22. Montague, R.: 1974,Formal Philosophy, Yale University Press, New Haven.Google Scholar
  23. Muskens, R.A.: forthcoming, Going Partial in Montague Grammar, to appear in the proceedings of the Sixth Amsterdam Colloquium, edited by R. Bartsch, J.F.A.K. van Benthem and P. van Emde Boas, Foris, Dordrecht.Google Scholar
  24. Orey, S.: 1959, Model Theory for the Higher Order Predicate Calculus,Transactions of the American Mathematical Society 92, 72–84.Google Scholar
  25. Reichenbach, H.: 1947,Elements of Symbolic Logic, Macmillan, New York.Google Scholar
  26. Renardel de Lavalette, G.: 1984, Descriptions in Mathematical Logic,Studia Logica 43, 281–294.Google Scholar
  27. Russell, B.: 1908, Mathematical Logic as Based on the Theory of Types,American Journal of Mathematics 30, 222–262.Google Scholar
  28. Schönfinkel, M.: 1924, Über die Bausteine der mathematischen Logik,Mathematische Annalen 92, 305–316.Google Scholar
  29. Scott, D.: 1967, Existence and Description in Formal Logic, in R. Schoenman (ed.),Bertrand Russell, Philosopher of the Century, Allen & Unwin, London, 660–696.Google Scholar
  30. Von Stechow, A.: 1974, ɛ-λ kontextfreie Sprachen: Ein Beitrag zu einer natürlichen formalen Semantik,Linguistische Berichte 34, 1–33.Google Scholar
  31. Veltman, F.: 1985,Logics for Conditionals, Dissertation, University of Amsterdam.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Reinhard Muskens
    • 1
  1. 1.Department of LinguisticsTilburg UniversityLE TilburgThe Netherlands

Personalised recommendations