Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A relational formulation of the theory of types

  • 67 Accesses

  • 9 Citations

This is a preview of subscription content, log in to check access.

References

  1. Asser, G.: 1957, Theorie der logischen Auswahlfunktionen,Zeitschrift für mathematische Logik und Grundlagen der Mathematik 3, 30–68.

  2. Barwise, J.: 1981, Scenes and Other Situations,The Journal of Philosophy,78, 369–397.

  3. Barwise, J. and Cooper R.: 1981, Generalized Quantifiers and Natural Language,Linguistics and Philosophy 4, 159–219.

  4. Barwise, J. and Perry J.: 1983,Situations and Attitudes, MIT Press, Cambridge, Mass.

  5. Bennett, M.: 1974,Some Extensions of a Montague Fragment of English, UCLA, Dissertation. Van Benthem, J.F.A.K. and Doets, K.: 1983, Higher-Order Logic, in Gabbay & Guenthner [1983], pp. 275–329.

  6. Camap, R.: 1929,Abriβ der Logistik, Verlag von Julius Springer, Vienna.

  7. Church, A.: 1940, A Formulation of the Simple Theory of Types,The Journal of Symbolic Logic 5, 56–68.

  8. Engdahl, E.: 1980,The Syntax and Semantics of Questions in Swedish, University of Massachusetts at Amherst, Dissertation, reprinted asConstituent Questions: The Syntax and Semantics of Questions with Special Reference to Swedish, Reidel, Dordrecht 1985.

  9. Gabbay, D. and Guenthner, F. (eds.): 1983,Handbook of Philosophical Logic, Vol. 1, Reidel, Dordrecht.

  10. Gallin, D.: 1975,Intensional and Higher-Order Modal Logic, North-Holland, Amsterdam.

  11. Gazdar, G.: 1980, A Cross-Categorial Semantics for Coordination,Linguistics and Philosophy 3, 407–409.

  12. Groenendijk, J. and Stokhof, M.: 1984,Studies on the Semantics of Questions and the Pragmatics of Answers, Dissertation, University of Amsterdam.

  13. Henkin, L.: 1950, Completeness in the Theory of Types,The Journal of Symbolic Logic 15, 81–91.

  14. Hermes, H.: 1965,Eine Termlogik mit Auswahloperator, Springer, Berlin-Heidelberg-New York.

  15. Hilbert, D. and Bemays, P.: 1939,Grundlagen der Mathematik, Vol. 2, Springer, Berlin.

  16. Janssen, T.: 1984, Individual Concepts are Useful, in A. Landman and F. Veltman (eds.),Varieties of Formal Semantics, Foris, Dordrecht, 171–192.

  17. Kamp, H.: 1981, A Theory of Truth and Semantic Representation, reprinted in J. Groenendijk, T. Janssen and M. Stokhof (eds.),Truth, Interpretation and Information, Foris, Dordrecht, 1984, 277–322.

  18. Keenan, E. and Faltz, L.: 1978,Logical Types for Natural Language, UCLA Occasional Papers in Linguistics, 3. Kratzer, A.: 1977, WhatMust andCan Can and Must Mean,Linguistics and Philosophy 1.

  19. Landman, A.: 1986,Towards a Theory of Information, Dissertation, University of Amsterdam.

  20. Leisenring, A.C.: 1969,Mathematical Logic and Hilbert's ɛ-Symbol, Macdonald, London.

  21. Montague, R.: 1973, The Proper Treatment of Quantification in Ordinary English, reprinted in Montague [1974], pp. 247–270.

  22. Montague, R.: 1974,Formal Philosophy, Yale University Press, New Haven.

  23. Muskens, R.A.: forthcoming, Going Partial in Montague Grammar, to appear in the proceedings of the Sixth Amsterdam Colloquium, edited by R. Bartsch, J.F.A.K. van Benthem and P. van Emde Boas, Foris, Dordrecht.

  24. Orey, S.: 1959, Model Theory for the Higher Order Predicate Calculus,Transactions of the American Mathematical Society 92, 72–84.

  25. Reichenbach, H.: 1947,Elements of Symbolic Logic, Macmillan, New York.

  26. Renardel de Lavalette, G.: 1984, Descriptions in Mathematical Logic,Studia Logica 43, 281–294.

  27. Russell, B.: 1908, Mathematical Logic as Based on the Theory of Types,American Journal of Mathematics 30, 222–262.

  28. Schönfinkel, M.: 1924, Über die Bausteine der mathematischen Logik,Mathematische Annalen 92, 305–316.

  29. Scott, D.: 1967, Existence and Description in Formal Logic, in R. Schoenman (ed.),Bertrand Russell, Philosopher of the Century, Allen & Unwin, London, 660–696.

  30. Von Stechow, A.: 1974, ɛ-λ kontextfreie Sprachen: Ein Beitrag zu einer natürlichen formalen Semantik,Linguistische Berichte 34, 1–33.

  31. Veltman, F.: 1985,Logics for Conditionals, Dissertation, University of Amsterdam.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muskens, R. A relational formulation of the theory of types. Linguist Philos 12, 325–346 (1989). https://doi.org/10.1007/BF00635639

Download citation

Keywords

  • Artificial Intelligence
  • Computational Linguistic
  • Relational Formulation