Molecular and General Genetics MGG

, Volume 222, Issue 2–3, pp 377–383

A dominant mutation inArabidopsis confers resistance to auxin, ethylene and abscisic acid

  • Allison K. Wilson
  • F. Bryan Pickett
  • Jocelyn C. Turner
  • Mark Estelle
Article

Summary

We have screened a large population of M2 seeds ofArabidopsis thaliana for plants which are resistant to exogenously applied indole-acetic acid (IAA). One of the resistant lines identified in this screen carries a dominant mutation which we have namedaxr2. Linkage analysis indicates that theaxr2 gene lies on chromosome 3. Plants carrying theaxr2 mutation are severe dwarfs and display defects in growth orientation of both the shoot and root suggesting that the mutation affects some aspect of gravitropic growth. In addition, the roots ofaxr2 plants lack root hairs. Growth inhibition experiments indicate that the roots ofaxr2 plants are resistant to ethylene and abscisic acid as well as auxin.

Key words

Plant hormone Mutant Arabidopsis Auxin Plant development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbier-Brygoo H, Ephritikhine G, Klambdt D, Ghislain M, Guern J (1989) Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc Natl Acad Sci USA 86:891–895Google Scholar
  2. Bitoun R, Rousselin P, Caboche M (1990) A pleiotropic mutation results in cross-resistance to auxin, abscisic acid and paclobutrazol. Mol Gen Genet 220:234–239Google Scholar
  3. Bleecker AB, Estelle MA, Somerville CR, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation inArabidopsis thaliana. Science 241:1086–1089Google Scholar
  4. Chang C, Bowman JL, DeJohn AW, Lander ES, Meyerowitz EM (1988) Restriction fragment length polymorphism linkage map forArabidopsis thaliana. Proc Natl Acad Sci USA 85:6856–6860Google Scholar
  5. Davies PJ (1987) Plant hormones and their role in plant growth and development. Martinus Nijhoff Publishers, DordrechtGoogle Scholar
  6. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21Google Scholar
  7. Dietzel C, Kurjan J (1987) The yeast SCG 1 gene: A Gα-like protein implicated in the a- and α-factor response pathway. Cell 50:1001–1010Google Scholar
  8. Estelle MA, Somerville CR (1987) Auxin-resistant mutants ofArabidopsis with an altered morphology. Mol Gen Genet 206:200–206Google Scholar
  9. Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13Google Scholar
  10. Guern J (1987) Regulation from within: The hormone dilemma. Ann Bot 60:75–102Google Scholar
  11. Guzman P, Ecker JR (1988) Development of large DNA methods for plants: molecular cloning of large segments ofArabidopsis and carrot DNA in yeast. Nucleic Acids Res 16:11091–11105Google Scholar
  12. Hartwell L (1980) Mutants ofSaccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormones. J Cell Biol 85:811–822Google Scholar
  13. Hesse T, Feldwisch J, Balshusemann D, Bauw G, Puype M, Vandekerckhove J, Lobler M, Klämbt D, Schell J, Palme K (1989) Molecular cloning and structural analysis of a gene fromZea mays (L.) coding for a putative receptor for the plant hormone auxin. EMBO J 8:2453–2462Google Scholar
  14. Inohara N, Shimomura S, Fukui T, Futai M (1989) Auxin-binding protein located in the endoplasmic reticulum of maize shoots: Molecular cloning and complete primary structure. Proc Natl Acad Sci USA 86:3564–3568Google Scholar
  15. Jacobs M, Ray P (1976) Rapid auxin-induced decrease in free space pH and its relationship to auxin-induced growth in maize and pea. Plant Physiol 58:203–209Google Scholar
  16. Jones JF, Kende H (1979) Auxin-induced ethylene biosynthesis in subapical stem sections of etiolated seedlings ofPisum satirum L. Planta 146:649–656Google Scholar
  17. Kende H, Hanson AD (1976) Relationship between ethylene evolution and senescence in morning-glory flower tissue. Plant Physiol 57:523–527Google Scholar
  18. King P (1988) Plant hormone mutants. Trends Genet 4:157–162Google Scholar
  19. Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants ofArabidopsis thaliana. Physiol Plant 61:377–383Google Scholar
  20. Koornneef M, Elgersma A, Hanhart CJ, van Loenen-Martinet EP, van Rijn L, Zeevaart JAD (1985) A gibberellin insensitive mutant ofArabidopsis thaliana. Physiol Plant 65:33–39Google Scholar
  21. Maher EP, Martindale SJB (1980) Mutants ofArabidopsis thaliana with altered responses to auxin and gravity. Biochem Genet 18:1041–1053Google Scholar
  22. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  23. Meyerowitz EM (1987)Arabidopsis thaliana. Annu Rev Genet 21:93–112Google Scholar
  24. Mirza JI, Maher EP (1985) The characterization of an auxin-resistant dwarf mutant ofArabidopsis thaliana. Arabidopsis Inf Serv 22:35–42Google Scholar
  25. Nakafuku M, Itoh H, Nakamura S, Kaziro Y (1987) Occurrence inSaccharomyces cerevisiae of a gene homologous to the cDNA coding for the a subunit of mammalian G proteins. Proc Natl Acad Sci USA 84:2140–2144Google Scholar
  26. Nam G-H, Giraudat J, den Boer B, Moonan F, Loos WDB, Hauge BM, Goodman HM (1989) Restriction fragment length polymorphism linkage map ofArabidopsis thaliana. Plant Cell 1:699–705Google Scholar
  27. Poovaiah BW, Reddy ASN, McFadden JJ (1987) Calcium messenger system: Role of protein phosphorylation and inositol bisphospholipids. Physiol Plant 69:569–573Google Scholar
  28. Sekar MC, Hokin LE (1986) The role of phosphoinositides in signal transduction. J Membr Biol 89:193–210Google Scholar
  29. Shen-Miller J (1983) Rhythmic differences in the basipetal movement of indoleacetic acid between separated upper and lower halves of geotropically stimulated corn coleoptiles. Plant Physiol 52:166–170Google Scholar
  30. Suiter KA, Wendel JF, Case JS (1983) LINKAGE-1: a PASCAL computer program for the detection and analysis of genetic linkage. J Hered 74:203–204Google Scholar
  31. Van Sluys MA, Tempe J, Federoff N (1987) Studies on the introduction and mobility of the maize Activator element inArabidopsis thaliana andDaucus carota. EMBO J 6:3881–3889Google Scholar
  32. Whiteway M, Hougan L, Dignard D, Thomas DY, Bell L, Saari GC, Grant F, O'Hara P, MacKay VL (1989) The STE4 and STE18 genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein. Cell 56:467–477Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Allison K. Wilson
    • 1
  • F. Bryan Pickett
    • 1
  • Jocelyn C. Turner
    • 1
  • Mark Estelle
    • 1
  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations