Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Principles and methods of dilution refrigeration. II

Abstract

This paper is an extension of, and complementary to, an earlier paper by Wheatley, Vilches, and Abel. Some important fundamental questions which lead to degradation in the performance of a dilution refrigerator are considered: namely, convection on the dilute side and superfluid on the concentrated side. Experimental results are presented for a film suppressing still used in conjunction with a continuous-heat exchanger (several designs are considered) and a variable number (0–6) of step-heat exchangers of a copper-foil type with a high surface-area-to-viscous-impedance ratio. The first quantitative measurements of viscous heating on the dilute side are presented as well as measurements of thermal resistance on the dilute and concentrated side. Finally, the properties of the refrigerator under external heat load are considered.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. C. Wheatley, O. E. Vilches, and W. R. Abel,Physics 4, 1 (1968).

  2. 2.

    B. S. Neganov, Preprint P13-4014 from Joint Institute for Nuclear Research, Dubna, USSR (1968).

  3. 3.

    P. Roubeau and E. J. Varoquaux,Cryogenics 10, 255 (1970).

  4. 4.

    G. J. Ehnholm, T. E. Katila, O. V. Lounasmaa, and P. Reivari,Cryogenics 8, 136 (1968).

  5. 5.

    H. E. Hall, P. J. Ford, and K. Thompson,Cryogenics 6, 80 (1966).

  6. 6.

    L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon Press, London, 1959), p. 217.

  7. 7.

    R. Radebaugh, U.S. NBS Technical Note 362, December 1967.

  8. 8.

    W. R. Abel and J. C. Wheatley,Phys. Rev. Letters 21, 1231 (1968).

  9. 9.

    W. R. Roach, thesis, University of Illinois, 1966 (unpublished).

  10. 10.

    R. W. H. Webeler and G. Allen,Phys. Letters 29A, 93 (1969).

  11. 11.

    J. R. G. Keyston and J. P. Laheurte,Phys. Letters 24A, 132 (1967).

  12. 12.

    W. C. Black, E. C. Hirschkoff, and A. C. Mota, private communication.

  13. 13.

    W. C. Black, E. C. Hirschkoff, A. C. Mota, and J. C. Wheatley,Rev. Sci. Instr. 40, 846 (1969).

  14. 14.

    B. N. Esel'son,Zh. Eksperim. i Teor. Fiz. 18, 795 (1948).

  15. 15.

    K. Mendelssohn and G. K. White,Proc. Phys. Soc. (London)A63, 1328 (1950).

  16. 16.

    T. P. Das, R. De Bruyn Ouboter, and K. W. Taconis, inProc. 9th Int. Conf. on Low Temp. Phys., Columbus, Ohio, J. G. Daunt, D. O. Edwards, F. J. Milford, and M. Yaqub, eds. (Plenum Press, New York, 1965), PartB. p. 1253.

  17. 17.

    B. S. Neganov, N. Borisov, and M. Liburg,Zh. Eksperim. i Teor. Fiz. 50, 1445 (1966) [English transl.,Soviet Phys.—JETP 23, 959 (1966)].

  18. 18.

    W. C. Black, private communication.

  19. 19.

    D. S. Betts and R. Marshall,Cryogenics 9, 460 (1969).

  20. 20.

    P. Roubeau, D. LeFur, and E. J.-A. Varoquaux,Proc. Berlin Cryogenics Conference, to be published.

  21. 21.

    W. A. Little,Can. J. Phys. 37, 334 (1959).

Download references

Author information

Additional information

Supported by the U.S. Atomic Energy Commission under Contract AT(04-3)-34, P.A. 143.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wheatley, J.C., Rapp, R.E. & Johnson, R.T. Principles and methods of dilution refrigeration. II. J Low Temp Phys 4, 1–39 (1971). https://doi.org/10.1007/BF00628435

Download citation

Keywords

  • Convection
  • Magnetic Material
  • Quantitative Measurement
  • Variable Number
  • Thermal Resistance