Advertisement

Journal of Low Temperature Physics

, Volume 2, Issue 5–6, pp 631–639 | Cite as

Thermal expansion of rhodium, iridium, and palladium at low temperatures

  • G. K. White
  • A. T. Pawlowicz
Article

Abstract

Coefficients (α) of linear thermal expansion of Rh, Ir, and Pd are reported to be respectively 8.45, 6.65, and 11.78×106° K1 at 238°K, and 3.50, 3.43, and 6.21×106°K1 at 75°K. At temperatures below 10°K, α may be represented by
$$\begin{gathered} 10^{10} \alpha = 20{\rm T} + 0.052{\rm T}^3 (Rh) \hfill \\ 10^{10} \alpha = 9{\rm T} + 0.070{\rm T}^3 (Ir) \hfill \\ 10^{10} \alpha = 40.5{\rm T} + 0.435{\rm T}^3 (Pd) \hfill \\ \end{gathered} $$
TheT andT3terms are identifiable with electron and lattice vibrational components, respectively. Corresponding Grüneisen parameters are γ (electron)≈2.8, 2.7, and 2.22 for Rh, Ir, and Pd, and γ 0 (lattice)≈2.0, 2.3, and 2.25.

Keywords

Thermal Expansion Palladium Magnetic Material Rhodium Iridium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Collins and G. K. White,Progr. Low Temp. Phys. 4, 450 (1964).Google Scholar
  2. 2.
    E. Fawcett, E. Bucher, and W. F. Brinkman,Natl. Bur. Stand. Symposium on Thermal Expansion of Solids, Proceedings (in press, 1968). See alsoJ. Appl. Phys. 40, 1097 (1969).Google Scholar
  3. 3.
    G. K. White,Phil. Mag. 6, 815 (1961).Google Scholar
  4. 4.
    N. Waterhouse and B. Yates,Cryogenics 8, 267 (1968).Google Scholar
  5. 5.
    G. K. White,Cryogenics 11, 151 (1951); R. H. Carr, R. D. McCammon, and G. K. White,Proc. Roy. Soc. A289, 72 (1964).Google Scholar
  6. 6.
    K. Clusius and C. G. Losa,Z. Naturforsch. 10A, 545 (1955).Google Scholar
  7. 7.
    N. M. Wolcott,Suppl. Bull., Inst. Internat. du Froid, Annexe 1955–3, 286, Paris (1955).Google Scholar
  8. 8.
    D. W. Budworth, F. E. Hoare, and J. Preston,Proc. Roy. Soc. 257, 250 (1960).Google Scholar
  9. 9.
    R. J. Corruccini and J. J. Gniewek,Natl. Bur. Stand. Monograph 29 (U.S. Govt. Printing Office, Washington, D.C., 1961).Google Scholar
  10. 10.
    R. G. Ross and W. Hume-Rothery,J. Less Common Metals 5, 258 (1963).Google Scholar
  11. 11.
    E. A. Owen and E. L. Yates,Phil. Mag. 15, 472 (1933).Google Scholar
  12. 12.
    S. Valentiner and J. Wallot,Ann. Physik 46, 837 (1915).Google Scholar
  13. 13.
    J. A. Rayne;Phys. Rev. 118, 1545 (1960).Google Scholar
  14. 14.
    B. M. Boerstoel (1969, unpublished).Google Scholar
  15. 15.
    K. Clusius and L. Schachinger,Z. Naturforsch. 2A, 90 (1947).Google Scholar
  16. 16.
    J. A. Cowan, A. T. Pawlowicz, and G. K. White,Cryogenics 8, 155 (1968).Google Scholar
  17. 17.
    K. Andres,Phys. Kondensierten Materie 2, 294 (1964).Google Scholar
  18. 18.
    G. K. White,Proc. Phys. Soc. 86, 159 (1965).Google Scholar
  19. 19.
    G. K. White (unpublished); J. F. Kos and J. L. G. Lamarche,Can. J. Phys. 47, 2509 (1969); C. A. Swenson and K. McLean (to be published).Google Scholar
  20. 20.
    S. Doniach and S. Engelsberg,Phys. Rev. Letters 17, 750 (1966).Google Scholar
  21. 21.
    J. J. Vuillemin and H. J. Bryant,Phys. Rev. Letters 23, 914 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1970

Authors and Affiliations

  • G. K. White
    • 1
  • A. T. Pawlowicz
    • 1
  1. 1.National Standards LaboratoryC.S.I.R.O. Division of PhysicsSydneyAustralia

Personalised recommendations