, Volume 99, Issue 3–4, pp 297–305

Pioneer and late stage tropical rainforest tree species (French Guiana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential

  • R. Huc
  • A. Ferhi
  • J. M. Guehl
Original Paper


Leaf gas exchange rates, predawn Ψwp and daily minimum Ψwm leaf water potentials were measured during a wet-to-dry season transition in pioneer (Jacaranda copaia, Goupia glabra andCarapa guianensis) and late stage rainforest tree species (Dicorynia guianensis andEperua falcata) growing in common conditions in artificial stands in French Guiana. Carbon isotope discrimination (Δ) was assessed by measuring the stable carbon isotope composition of the cellulose fraction of wood cores. The Δ values were 2.7‰ higher in the pioneer species than in the late stage species. The calculated time integratedCi values derived from the Δ values averaged 281 μmol mol−1 in the pioneers and 240 μmol mol−1 in the late stage species. The corresponding time-integrated values of intrinsinc water-use efficiency [ratio CO2 assimilation rate (A)/leaf conductance (g)] ranged from 37 to 47 mmol mol−1 in the pioneers and the values were 64 and 74 mmol mol−1 for the two late stage species. The high Δ values were associated—at least inJ. copaia—with high maximumg values and with high plant intrinsinc specific hydraulic conductance [C≔g/(Ψwm−Ψwp], which could reflect a high competitive ability for water and nutrient uptake in the absence of soil drought in the pioneers. A further clear discriminating trait of the pioneer species was the very sensitive stomatal response to drought in the soil, which might be associated with a high vulnerability to cavitation in these species. From a methodological point of view, the results show the relevance of Δ for distinguishing ecophysiological functional types among rainforest trees.

Key words

Rainforest trees Successional status Stomatal function Carbon isotope discrimination Water potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandre DY (1991) Comportement hydrique au cours de la saison sèche et place dans la succession de trois arbres guyanais:Trema micrantha, Goupia glabra etEperua grandiflora. Ann Sci For. 48: 101–112Google Scholar
  2. Bazzaz FA (1979) The physiological ecology of plant succession. Annu Rev Ecol Syst 10: 351–371Google Scholar
  3. Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28: 335–337Google Scholar
  4. Caemmerer S, Farquhar GD (1981) Some relationships between the biochemestry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387Google Scholar
  5. Chiariello NR, Field CB, Mooney HA (1987) Midday wilting in a tropical pioneer tree. Funct Ecol 1: 3–11Google Scholar
  6. Comstock JP, Ehleringer JR (1992) Correlating genetic variation in carbon isotopic composition with complex climatic gradients. Proc Natl Acad Sci USA 89: 7747–7751Google Scholar
  7. Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soils. Annu Rev Plant Physiol Plant Mol Biol 42: 55–76Google Scholar
  8. Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry. Elsevier, Amsterdam, pp 329–344Google Scholar
  9. Deléns E (1980) Fractionnement des isotopes stables du carbone lors des carboxylations végétales. Thèse de Doctorat d'Etat, Université de Paris Sud-OrsayGoogle Scholar
  10. Doley D, Unwin GL, Yates DJ (1988) Spatial and temporal distribution of photosynthesis and transpiration by single leaves in a rainforest tree,Argyrodendron peralatum. Aust J Plant Physiol 15: 317–326Google Scholar
  11. Dolman AJ, Gash JHC, Roberts J, Shuttleworth WJ (1991) Stomatal and surface conductance of tropical rainforest. Agric For Meteorol 5: 303–318Google Scholar
  12. Ducrey M, Guehl JM (1990) Fonctionnement hydrique de l'écosystème forestier. Flux et bilans au niveau du couvert et dans le sol. Influences du défrichement. In: Sarrailh JM (ed) Mise en valeur de l'écosystème forestier guyanais, Opération Ecerex. INRA-CTFT, Paris, pp 103–136Google Scholar
  13. Ehleringer JR (1991)13C/12C fractionation and its utility in terrestrial plant studies. In: Coleman DC, B Fry (eds) Carbon isotope techniques. Academic Press, San Diego pp 187–200Google Scholar
  14. Ehleringer JR, Cooper TA (1988) Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia 76: 562–566Google Scholar
  15. Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol 11: 539–552Google Scholar
  16. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40: 503–537Google Scholar
  17. Forget PM (1988). Dissémination et régénération naturelle de huit espèces d'arbres en forêt guyanaise. Thesis University Paris VIGoogle Scholar
  18. Goldstein G, Rada F, Rundel P, Azocar A, Orozco A (1989) Gas exchange and water relations of evergreen and deciduous tropical savanna trees. Ann Sci For 46S: 448–453Google Scholar
  19. Granier A, Colin F (1990) Effects d'une sécheresse édaphique sur le fonctionnement hydrique d'Abies bornmulleriana en conditions naturelles. Ann Sci For 47: 189–200Google Scholar
  20. Guehl JM (1984) Dynamique de l'eau dans le sol en forêt tropicale humide guyanaise. Influence de la couverture pédologique. Ann Sci. For. 41: 195–336Google Scholar
  21. Henson IE, Jensen CR, Turner NC (1989) Leaf gas exchange and water relations of lupins and wheat. I. Shoot responses to soil water deficits. Aust J Plant Physiol 16: 401–413Google Scholar
  22. Hubick KT, ShorteR R, Farquhar GD (1988) Heritability and genotype x environment interactions of carbon isotope discrimination and transpiration efficiency in peanut (Arachis hypogea L.). Aust J Plant Physiol 15: 799–813Google Scholar
  23. Huc R, Guehl JM (1989) Environmental control of CO2 assimilation rate and leaf conductance in two species of the tropical rain forest of French Guiana (Jacaranda copaia D. Don andEperua falcata Aubl.). Ann Sci For 46S: 443–447Google Scholar
  24. Jones HG, Sutherland RA (1991) Stomatal control of xylem embolism. Plant Cell Environ 14: 607–312Google Scholar
  25. Martin B, Thorstenson YR (1988) Stable carbon isotope composition (δ13C), water-use efficiency, and biomass productivity ofLycopersicon esculentum, Lycopersicon pennellii, and the F1 hybrid. Plant Physiol 88: 213–217Google Scholar
  26. Medina E, Garcia V, Cuevas E (1990) Sclerophylly and oligotrophic environments: relationships between leaf structure, mineral nutrien content, and drought resistance in tropical rain forests of the upper Rio Negro region. Biotropica 22: 51–64Google Scholar
  27. Meinzer FC, Grantz DA (1990) Stomatal and hydraulic conductance in growing sugarcane: stomatal adjustment to water transport capacity. Plant Cell Environ 13: 383–388Google Scholar
  28. Meinzer FC, Rundel PW, Goldstein G, Sharifi MR (1992) Carbon isotope composition in relation to leaf gas exchange and environmental conditions in HawaiianMetrosideros polymorpha populations. Oecologia 91: 305–311Google Scholar
  29. O'Leary M (1981) Carbon isotope fractionation in plants. Phytochemistry 20: 553–567Google Scholar
  30. Oberbauer SF, Strain BR, Riechers GH (1987) Field water relations of a wet-tropical forest tree species,Pentaclethra macroloba (Mimosaceae). Oecologia 71: 369–374Google Scholar
  31. Read J, Farquhar GD (1991). Comparative studies inNothofagus (Fagaceae) I. Leaf carbon isotope discrimination. Funct Ecol 5: 684–695Google Scholar
  32. Schleser GH (1992) δ13C pattern in a forest tree as an indicator of carbon transfer in trees. Ecology 73: 1992–1925Google Scholar
  33. Schulze ED (1986) Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annu Rev Plant Physiol 37: 247–274Google Scholar
  34. Schuster WSF, Phillips SL, Sandquist DR, Ehleringer JR (1992a) Heritability of carbon isotope discrimination inGutierrezia microcephala (Asteraceae). Am J Bot 79: 216–221Google Scholar
  35. Schuster WSF, Sandquist DR, Phillips SL, Ehleringer JR (1992b) Comparisons of carbon isotope discrimination in populations of aridland plant species differing in lifespan. Oecologia 91: 332–337Google Scholar
  36. Tyree MT, Sperry JS (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress: answers from a model. Plant Physiol 88: 574–580Google Scholar
  37. Tyree MT, Snyderman DA, Wilmot TR, Machado JL (1991) Water relations and hydraulic architecture of a tropical tree (Schefflera morototoni): data, models and a comparison to two temperate species (Acer saccharum andThuja occidentalis). Plant Physiol. 96: 1105–1113Google Scholar
  38. Valentini R, Scarascia Mugnozza GE, Ehleringer JR (1992). Hydrogen and carbon isotope ratios of selected species of a mediterranean macchia ecosystem. Funct Ecol 6: 627–631Google Scholar
  39. Wartinger A., Heilmeier H, Hartung W, Schulze ED (1990) Daily and seasonal courses of leaf conductance and abscsic acid in the xylen sap of almond trees (Prunus dulcis (Miller) D.A. Webb) under desert conditions. New Phytol 116: 581–587Google Scholar

Copyright information

© Springer Verlag 1994

Authors and Affiliations

  • R. Huc
    • 1
  • A. Ferhi
    • 2
  • J. M. Guehl
    • 3
  1. 1.Station de Recherches ForestièresINRA Groupe régional de GuyaneKourouFrance
  2. 2.Centre de Recherches GéodynamiquesThonon-les-BainsFrance
  3. 3.Unité de Recherches en Ecophysiologie Forestière, Equipe Bioclimatologie-EcophysiologieINRA centre de NancyChampenouxFrance
  4. 4.Laboratoire de Recherches Forestières MéditerranéennesINRA AvignonAvignonFrance

Personalised recommendations