Advertisement

Astrophysics and Space Science

, Volume 226, Issue 2, pp 273–307 | Cite as

Twin universes cosmology

  • Jean-Pierre Petit
Article

Abstract

Starting from the field equationS =χ(T -A(T)), presented in a former paper, we present a test result, based on numerical simulations, giving a new model applied to the very large structure of the Universe. A theory of inverse gravitational lensing is developed, in which the observed effects could be due mainly to the action of surrounding ‘antipodal matter’. This is an alternative to the explanation based on dark matter existence. We then develop a cosmological model. Because of the hypothesis of homogeneity, the metric must be a solution of the equationS = 0, although the total mass of the Universe is non-zero. In order to avoid the trivial solutionR = constant ×t, we consider a model with ‘variable constants’. Then we derive the laws linking the different constants of physics:G, c, h, m; in order to keep the basic equations of physics invariant, so that the variation of these constants is not measurable in the laboratory, the only effect of this process being the red shift, due to the secular variation of these constants. All the energies are conserved, but not the masses. We find that all of the characteristic lengths (Schwarzschild, Jeans, Compton, Planck) vary like the characteristic lengthR, from where all the characteristic times vary like the cosmic timet. As the energy of the photon is conserved over its flight, the decrease of its frequencyν is due to the growth of the Planck constanth ≈ t. In such conditions the field equations have a single solution, corresponding to a negative curvature and to an evolution law:R ≈ t2/3.

The model is no longer isentropic ands ≈ logt. The cosmologic horizon varies likeR, so that the homogeneity of the Universe is ensured at any time which constitues an alternative to the theory of inflation. We re-find, for moderate distances, Hubble's law. A new law: distance =f(z) is derived, very close to the classical one for moderate red shifts.

Keywords

Dark Matter Total Mass Characteristic Time Field Equation Characteristic Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petit, J.P.: The missing mass effect. Il Nuovo Cimento B. Vol. 109, July 1994, pp. 697–710.Google Scholar
  2. 2.
    Zel'dovich, Ya.B.: 1970,Astrofisica 6, 319;MNRAS 192, 192.Google Scholar
  3. 3.
    Doroskhevitch, A.G.: 1980,MNRAS 192, 32.Google Scholar
  4. 4.
    Klypin, A.A. and Shandarin, S.F.: 1983,MNRAS 204, 891.Google Scholar
  5. 5.
    Centrella, J.M. and Mellot, A.L.: 1983,Nature 305, 196.Google Scholar
  6. 6.
    Shandarin, S.F.: 1988, in: Large Scale Structures of the Universe, ed. J. Audouze, M.C. Peleton, and A. Szalay, 273. Dordrecht: Kluwer.Google Scholar
  7. 7.
    Kofman, L.A., Pogosyan, D., and Shandarin, S.: 1990,MNRAS 242, 200.Google Scholar
  8. 8.
    Peebles, P.J.E.: 1993, Principles of Physical Cosmology, Princeton University Press.Google Scholar
  9. 9.
    R. Adler, M. Bazin, and M. Schiffer: 1975, Introduction to General Relativity. Mac-Graw Hill book company.Google Scholar
  10. 10.
    V.S. Troitskii: 1987,Astrophysics and Space Science 139, 389–411.Google Scholar
  11. 11.
    J.P. Petit: 1988,Mod. Phys. Lett. A3, 1527.Google Scholar
  12. 12.
    J.P. Petit: 1988,Mod. Phys. Lett. A3, 1733.Google Scholar
  13. 13.
    J.P. Petit: 1988,Mod. Phys. Lett. A4, 2201.Google Scholar
  14. 14.
    E.A. Milne: 1948, Kinematic Relativity, Oxford.Google Scholar
  15. 15.
    P.A. Dirac: 1937,Nature 139, 323.Google Scholar
  16. 16.
    P.A. Dirac: 1973,Proc. Roy. Soc. London A333, 403.Google Scholar
  17. 17.
    F. Hoyle and J.V. Narlikar: 1972, Cosmological models in conformally invariant gravitational theory,Mon. Notices Roy. Astr. Soc. 55, 305–325.Google Scholar
  18. 18.
    V. Canuto and J. Lodenquai: 1977, Dirac cosmologiy,Ap.J. 211, 342–356, January 15.Google Scholar
  19. 19.
    T.C. van Flandern: Is the gravitational constant changing?,Ap.J. 248, 813–816.Google Scholar
  20. 20.
    V. Canuto and S.H., Hsieh: 1978, The 3 K blackbody radiation, Dirac's large numbers hypothesis, and scale-covariant cosmology,Ap.J. 224, 302–307, September 1.Google Scholar
  21. 21.
    A. Julg: 1983, Dirac's large numbers hypothesis and continuous creation,Ap.J. 271, 9–10, August 1.Google Scholar
  22. 22.
    Brans and Dicke: 1961,Phys. Rev., 124–925.Google Scholar
  23. 23.
    Ratra: 1992,Astrophys. J. Lett. 391, L1.Google Scholar
  24. 24.
    Guth: 1981,Phys. Rev. D23, 347.Google Scholar
  25. 25.
    Sugiyama and Sato: 1992,Astrophys. Jr. 387, 439.Google Scholar
  26. 26.
    Yoshii and Sato: 1992,Astrophys. J. Lett. 387, L7.Google Scholar
  27. 27.
    H. Reeves: 1994,Rev. Mod. Phys. 66, 193.Google Scholar
  28. 28.
    V.S. Troitskii: 1987,Astrophysics and Space Science 139, 389–411.Google Scholar
  29. 29.
    J.M. Souriau: 1970, Souriau Structure des systèmes dynamiques, Ed. Dunod, France.Google Scholar
  30. 30.
    Taylor: 1994,Rev. Mod. Phys. 66, 711.Google Scholar
  31. 31.
    Bahcall, N.A.: 1988,Ann. Rev. of Astron. Ap. 26, 631 (19–20).Google Scholar
  32. 32.
    Bahcall, N.A. and Soneira, R.M.: 1992,Ap.J. 392, 419.Google Scholar
  33. 33.
    Bahcall, N.A. and West, M.J.: 1992,Ap.J. 392, 419.Google Scholar
  34. 34.
    Luo, X. and Schramm, D.N.: 1992,Science 256, 313.Google Scholar
  35. 35.
    P.D. Barthel and G.K. Miley: 1988, Evolution od radio structure in quasars: a new probe of protogalaxies?,Nature 333, 26 may.Google Scholar
  36. 36.
    A.D. Sakharov: 1967,ZhETF Pis'ma 5, 32; 1967,JETP Lett. 5, 24. trad. Preprint R2-4267, JINR, Dubna.Google Scholar
  37. 37.
    D. Novikov: 1966,ZhETF Pis'ma 3, 223; 1966,JETP Lett. 3, 142; 1966,trad Astr. Zh. 43, 911; 1967,Sov. Astr. 10, 731.Google Scholar
  38. 38.
    J.P. Petit: ‘Univers énantiomorphes à temps propres opposés’, CRAS du 8 mai 1977, t. 285, pp. 1217–1221.Google Scholar
  39. 39.
    J.P. Petit: ‘Univers en interaction avec leur image dans le miroir du temps’. CRAS du 6 juin 1977, t. 284, série A, pp. 1413–1416.Google Scholar
  40. 40.
    J.P. Petit: 1983, Le Topologicon, Ed. Belin, France.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Jean-Pierre Petit
    • 1
  1. 1.Observatory of MarseilleFrance

Personalised recommendations