Astrophysics and Space Science

, Volume 222, Issue 1–2, pp 65–83 | Cite as

Once more on quasar periodicities

  • Ágnes Holba
  • I. Horváth
  • B. Lukács
  • G. Paál


In an earlier paper Arp, Bi, Chu and Zhu investigated various quasar samples and recognized a periodicity of remarkable degree in them. Their conclusion was that the existence of such a periodicity is a counterevidence against the cosmological origin of quasar redshifts. Since this question is of great importance in a cosmological context, here we reanalyze some of the samples together with a galaxy sample of the pencil-beam survey of Broadhurstet al. Our result is that on the plane of cosmological parameters (Ω0, λ0) there is a non-negligible region where two quasar samples and the galaxy sample are simultaneously fairly periodic. Pure periodicity is still compatible with cosmological principles, at least on length scales much longer than the period length. So the regularities can fit into a cosmological context.


Early Paper Period Length Cosmological Parameter Remarkable Degree Galaxy Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arp, H.: 1987,Quasars, Redshifts and Controversies, Publ. Interstellar Media, Berkeley, Ca.Google Scholar
  2. Arp, al.: 1990,Astron. Astrophys. 239, 33.Google Scholar
  3. Arp, H.C. and van Flandern, T.: 1992,Phys. Lett. A 164, 263.Google Scholar
  4. Broadhurst, al.: 1990,Nature 343, 726.Google Scholar
  5. Carlberg, R.G.:Astrophys. J. 375, 429.Google Scholar
  6. Dodelson, S. and Jubas, J.M.: 1993,Phys. Rev. Lett. 70, 2224.Google Scholar
  7. Ellis, G.F.R.: 1971,Gen. Rel. Grav. 2, 7.Google Scholar
  8. Ezekiel, M. and Fox, K.A.: 1969,Methods of Correlation and Regression Analysis, J. Wiley and Sons, N.Y.Google Scholar
  9. Fagundes, H.V. and Wichoski, U.F.: 1987,Astrophys. J. Lett. 332, L5.Google Scholar
  10. Fang, L.-Z. and Mo, H.J.: 1987, in: A. Hewittet al. (eds.),Proc. IAU Symp. 124, D. Reidel Publ. Co., Dordrecht, p. 461Google Scholar
  11. Fang, L.-Z. and Sato, H.: 1984,Chin. Astron. Astrophys. 8, 148.Google Scholar
  12. Fang, al.: 1982,Astron. Astrophys. 106, 287.Google Scholar
  13. Hoell, J., Liebscher, D.E. and Priester, W.: 1993,Lecture at the 2nd EAU Conference, August 17–21, Torun.Google Scholar
  14. Holba, Ágneset al.: 1992,Astrophys. Space Sci. 198, 111.Google Scholar
  15. Lahav, al.: 1991,Monthly Notices Roy. Astron. Soc. 251, 128.Google Scholar
  16. Mészáros, A.: 1994:Astrophys. J., (in print).Google Scholar
  17. Paál, G.: 1970,Science, June, p. 101.Google Scholar
  18. Paál, G.: 1971,Acta Phys. Hung. 30, 51.Google Scholar
  19. Paál, G., Horváth, I. and Lukács, B.: 1992,Astrophys. Space Sci. 191, 107.Google Scholar
  20. Persic, M. and Salucci P.: 1993,Monthly Notices Roy. Astr. Soc. 258, 14.Google Scholar
  21. Stevens, D., Scott, D. and Silk, J.: 1993,Phys. Rev. Lett. 71, 20.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Ágnes Holba
    • 1
  • I. Horváth
    • 1
  • B. Lukács
    • 1
  • G. Paál
    • 2
  1. 1.Central Research Institute for PhysicsBudapestHungary
  2. 2.Konkoly Observatory of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations