Astrophysics and Space Science

, Volume 226, Issue 1, pp 7–18 | Cite as

Non-adiabatic gravitational collapse in higher dimensional space-time and its junctions conditions

  • B. Bhui
  • S. Chaterjee
  • A. Banerjee


Junction conditions are studied at the boundary of a higher dimensional spherical distribution containing an outgoing heat flow and radiation flux. Our analysis extends to higher dimension, an important observation of Santos that for a collapsing fluid with radial heat flow the isotropic pressure on the surface of discontinuity does not vanish. Some physically relevant parameters like luminosity, mass function for the bounded distribution and also the time required for horizon formation are also calculated and it is observed that the dimensionality of space-time does not qualitatively alter the analogous results of the ‘standard’ space time.


Radiation Heat Flow High Dimension Relevant Parameter Analogous Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burrows, A. and Lattimmer, J.: 1986,Astrophys. J. 307, 178.Google Scholar
  2. Cahill, M.E. and McVittie, G.C.: 1970,J. Math. Phys. 11, 1382.Google Scholar
  3. Chatterjee, S. and Bhui, B.: 1990,Monthly Not. Roy. Astr. Soc. 247, 577;Int. J. Theor. Phys. 32, 671.Google Scholar
  4. Chatterjee, S., Bhui, B. and Banerjee, A.: 1990,J. Math. Phys. 31, 2208.Google Scholar
  5. de Oliveira, A.K.G., Santos, N.O. and Kolassis, C.A.: 1985,Monthly Not. Roy. Astr. Soc. 216, 1001.Google Scholar
  6. de Olivelra, A.K.G., de F. Pacheco, J.A. and Santos, J.O.: 1986,Monthly Not. Roy. Astr. Soc. 220, 405.Google Scholar
  7. Duff, M.J., Nilsson, B.E. and Pope, C.N.: 1986,Phys. Rep. 130, 1.Google Scholar
  8. Guendelman, E.I.: 1991,Gen. Rel. Grav. 23, 1415.Google Scholar
  9. Hoyle, F. and Fowler, W.A.: 1963,Nature 197, 533.Google Scholar
  10. Israel, W.: 1958,Proc. Roy. Soc. London 248, 404.Google Scholar
  11. Lichnerowicz, A.: 1955,Theories relativities dela Grav. et de 1. Electromagnetisme, Masson, Paris.Google Scholar
  12. Myer, R. and Perry, M.: 1986,Ann. Phys. (N.Y.) 172, 304.Google Scholar
  13. Misner, C.W. and Sharp, D.H.: 1965,Phys. Lett. 15, 279.Google Scholar
  14. O'Brien, S. and Synge, J.L.: 1952,Comm. Dublin Inst. Adv. Stud. A 9, p. 1.Google Scholar
  15. Oppenhelmer, J.R. and Snyder, H.: 1939,Phys. Rev. 56, 955.Google Scholar
  16. Santos, N.O.: 1985,Monthly Not. Roy. Astr. Soc. 116, 403.Google Scholar
  17. Shvartsman, V.F.: 1971,Soviet Phys. JETP 33, 475.Google Scholar
  18. Vaidya, P.C.: 1953,Nature 171, 260.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • B. Bhui
    • 1
  • S. Chaterjee
    • 1
  • A. Banerjee
    • 1
  1. 1.Relativity and Cosmology Research CentreJadavpur UniversityCalcuttaIndia

Personalised recommendations