Advertisement

Transition Metal Chemistry

, Volume 6, Issue 2, pp 90–93 | Cite as

Preparation of μ-(η55-Fulvalene)-di-μ-hydrido-bis(η5-cyclopentadienyltitanium) by the reduction of Cp2TiCl2 with LiAlH4 in aromatic solvents

  • Helena Antropiusová
  • Alena Dosedlová
  • Vladimír Hanuš
  • Karel Mach
Full Papers

Summary

μ-(η55-Fulvalene)-di-μ-hydrido-bis(η5-cyclopentadienyltitanium) (1) can be prepared by the reduction of Cp2TiCl2 with LiAlH4 in methylbenzenes and in tetralin at their boiling temperatures in yields greater than 90%. The reduction proceedsvia the bis(η5-cyclopentadienyl)titanium(III) chloride dimer which is further transformed into the unstable [Cp2TiH] species. Thermal decomposition of the latter accompanied by hydrogen evolution gives rise to (1). μ-(η55-Fulvalene)-μ-hydrido-μ-chloro-bis(η5-cyclopentadienyltitanium), the first fulvalene containing compound observed in the system is formed by hydrido-chloro exchange of (1) with (Cp2TiCl)2 and aluminium chlorohydrides.

Keywords

Hydrogen Aluminium Chloride Titanium Physical Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    F. Tureček, H. Antropiusová, K. Mach, V. Hanuš and P. Sedmera,Tetrahedron Lett., 637 (1980).Google Scholar
  2. (2).
    G. P. Pez,J. Chem. Soc. Chem. Commun., 560 (1977).Google Scholar
  3. (3).
    J.-J. Salzmann and P. Mosimann,Helv. Chim. Acta, 50, 1831 (1967).Google Scholar
  4. (4).
    E. E. van Tamelen, W. Cretney, N. Klaentschi and J. S. Miller,J. Chem. Soc. Chem. Commun., 481 (1972).Google Scholar
  5. (5).
    G. W. Watt, L. J. Baye and F. O. Drummond,J. Am. Chem. Soc. 88, 1138 (1966).Google Scholar
  6. (6).
    K. Clauss and H. Bestian,Justus Liebigs Ann. Chem., 654, 8 (1962).Google Scholar
  7. (7).
    H. Alt and M. D. Rausch,J. Am. Chem. Soc. 96, 5936 (1974).Google Scholar
  8. (8).
    H. Antropiusová, V. Hanuš and K. Mach,Transition Met. Chem., 3, 121 (1978).Google Scholar
  9. (9).
    K. Mach, H. Antropiusová, V. Hanuš and A. Dosedlová,Transition Met. Chem., 5, 5 (1980).Google Scholar
  10. (10).
    G. Henrici-Olivé and S. Olivé,J. Organometal. Chem., 23, 155 (1970).Google Scholar
  11. (11).
    A. K. Zefirova, N. N. Tikhomirova and A. E. Shilov,Dokl. Akad. Nauk USSR, 132, 1082 (1960).Google Scholar
  12. (12).
    P. E. M. Allen, J. K. Brown and R. M. S. Obaid,Trans. Faraday Soc. 59, 1808 (1963).Google Scholar
  13. (13).
    Y. Nozawa and M. Takeda,Kogyo Kagaku Zashi, 71, 189 (1968).Google Scholar
  14. (14).
    B. M. Bulychev, S. E. Tokareva, G. L. Soloveichik and E. V. Evdokimova,J. Organometal. Chem., 179, 263 (1979).Google Scholar
  15. (15).
    E. Wiberg and M. Schmidt,Z. Naturforsch., 6b, 458 (1951).Google Scholar
  16. (16).
    J. E. Bercaw and H. H. Brintzinger,J. Am. Chem. Soc. 91, 7301 (1969).Google Scholar
  17. (17).
    J. E. Bercaw, R. H. Marvich, L. G. Bell and H. H. Brintzinger,J. Am. Chem. Soc. 94, 1219 (1972).Google Scholar
  18. (18).
    H. H. Brintzinger and J. E. Bercaw,J. Am. Chem. Soc. 92, 6182 (1970).Google Scholar
  19. (19).
    H. A. Martin and R. O.de Jongh,Chem. Commun., 1366 (1969).Google Scholar

Copyright information

© Verlag Chemie GmbH 1981

Authors and Affiliations

  • Helena Antropiusová
    • 1
  • Alena Dosedlová
    • 1
  • Vladimír Hanuš
    • 1
  • Karel Mach
    • 1
  1. 1.J. Heyrovský Institute of Physical Chemistry and ElectrochemistryCzechoslovak Academy of SciencesPrague 2Czechoslovakia

Personalised recommendations