Optical and Quantum Electronics

, Volume 24, Issue 2, pp S273–S283 | Cite as

3-dimensional photonic band structure

  • E. Yablonovitch
  • T. J. Gmitter
  • K. M. Leung
  • R. D. Meade
  • A. M. Rappe
  • K. D. Brommer
  • J. D. Joannopoulos
An Invited Paper

Abstract

Three-dimensionally periodic dielectric structures, (photonic crystals), possessing a forbidden gap for electromagnetic wave propagation, (a photonic bandgap), are now known. If the perfect 3-dimensional periodicity is broken by a local defect, then local electromagnetic modes can occur within the forbidden bandgap. The addition of extra dielectric material locally, inside the photonic crystal, produces ‘donor’ modes. Conversely, the local removal of dielectric material from the photonic crystal produces ‘acceptor’ modes. It will now be possible to make high-Q electromagnetic cavities of volume ∼ 1 cubic wavelength, for short wavelengths at which metallic cavities are useless. These new dielectric cavities can cover the range all the way from millimeter waves, down to ultraviolet wavelengths.

References

  1. 1.
    E. Yablonovitch,Phys. Rev. Lett. 58 (1987) 2059.Google Scholar
  2. 2.
    S. John,Ibid.,58 (1987) 2486.Google Scholar
  3. 3.
    K. M. Leung andY. F. Liu,Ibid.,65 (1990) 2646.Google Scholar
  4. 4.
    Z. Zhang andS. Satpathy,Ibid.,65 (1990) 2650.Google Scholar
  5. 5.
    K. M. Ho, C. T. Chan andC. M. Soukoulis,Ibid.,65 (1990) 3152.Google Scholar
  6. 6.
    S. John andJ. Wang,Ibid.,64 (1990) 2418.Google Scholar
  7. 7.
    E. Yablonovitch, T. J. Gmitter andK. M. Leung,Ibid.,67 (1991) 2295.Google Scholar
  8. 8.
    Y. Yamamoto andS. Machida,Phys. Rev. A35 (1987) 5114.Google Scholar
  9. 9.
    E. Yablonovitch andT. J. Gmitter,Phys. Rev. Lett. 63 (1989) 1950.Google Scholar
  10. 10.
    S. Satpathy, Z. Zhang andM. R. Salehpour,Ibid.,64 (1990) 1239.Google Scholar
  11. 11.
    K. M. Leung andY. F. Liu,Phys. Rev. B41 (1990) 10188.Google Scholar
  12. 12.
    S. John andR. Rangarajan,Ibid.,38 (1988) 10101.Google Scholar
  13. 13.
    E. N. Economu andA. Zdetsis,Ibid.,40 (1989) 1334.Google Scholar
  14. 14.
    E. Yablonovitch, unpublished.Google Scholar
  15. 15.
    A. Scherer, B. P. Van Der Gaag, E. D. Beebe andP. S. D. Lin,J. Vac. Sci. Technol. B8 (1990) 28.Google Scholar
  16. 16.
    R. D. Meade, K. D. Brommer, A. M. Rappe andJ. D. Joannopoulos, published inPhys. Rev. Rapid Communications. Google Scholar
  17. 17.
    A. Scherer andB. P. Van Der Gaag, private communication.Google Scholar
  18. 18.
    H. Kogelnik andC. V. Shank,J. Appl. Phys. 43 (1972) 2328.Google Scholar
  19. 19.
    H. A. Haus andC. V. Shank,IEEE J. Quantum Electron. QE-12 (1976) 532.Google Scholar
  20. 20.
    S. L. McCall andP. M. Platzman,Ibid.,QE-21 (1985) 1899.Google Scholar
  21. 21.
    L. I. Schiff, ‘Quantum Mechanics’ (McGraw-Hill, New York, 1949) p. 37, 77.Google Scholar
  22. 22.
    R. Natarajan andD. Vanderbilt,J. Comput. Phys. 81 (1989) 218.Google Scholar
  23. 23.
    E. Yablonovitch, T. Gmitter, J. P. Harbinson andR. Bhat,Appl. Phys. Lett. 51 (1987) 2222.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • E. Yablonovitch
    • 1
  • T. J. Gmitter
    • 1
  • K. M. Leung
    • 2
  • R. D. Meade
    • 3
  • A. M. Rappe
    • 3
  • K. D. Brommer
    • 3
  • J. D. Joannopoulos
    • 3
  1. 1.Bell Communications ResearchNavesink Research CenterRed BankUSA
  2. 2.Dept. of PhysicsPolytechnic University BrooklynUSA
  3. 3.Dept. of PhysicsMITCambridgeUSA

Personalised recommendations