Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Unified and generalized Fresnel numbers

  • 99 Accesses

  • 17 Citations

Abstract

The concept of Fresnel number is discussed and expressions are derived for misaligned optical systems. For the case of perfectly aligned optical elements, the usual number,N, based on a Fresnel zone concept is found to be given byN = (a 2/λ)(D 1/B 1 +A 2/B 2), whereB 1,D 1 andB 2,A 2 are the transfer matrix elements of the optical systems before and after a circular aperture of radiusa respectively. A modified definition of the Fresnel number is proposed for Gaussian beam propagation. This parameterN′ G, is related to the complex beam parameter and may be represented by the angleθ = tan−1 N′ G, found in the familiar Collins chart and its dual representation. A general relation for the transformation of this Fresnel number is found. The expressions for Gaussian beam transformation are thus simplified, since the waist-waist transform is given byN′ G1 =N′ G2 = 0. Finally, these two kinds of Fresnel numbers are written as tensors when applied to cases involving elliptical apertures, astigmatic beams and nonsymmetrical systems.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. J. Campillo, J. E. Pearson, S. L. Shapiro andN. J. Terrell,Appl. Phys. Lett. 23 (1973) 85.

  2. 2.

    F. Dianyuan,Acta Optica Sinica 3 (1983) 319 (in Chinese).

  3. 3.

    H. Kogelnik andT. Li,Proc. IEEE 54 (1966) 1312.

  4. 4.

    D. A. Buralli andG. M. Morris,Appl. Opt. 28 (1989) 3950.

  5. 5.

    Y. Li andE. Wolf,Opt. Commun. 39 (1981) 211.

  6. 6.

    Y. Li,J. Modern Opt. 36 (1989) 139.

  7. 7.

    H. Kogelnik,Bell Syst. Tech. J. 44 (1965) 455.

  8. 8.

    W. H. Carter,Appl. Opt. 21 (1982) 1989.

  9. 9.

    W. Shaomin,Opt. Quantum Electron. 17 (1985) 1.

  10. 10.

    W. Shaomin andL. Ronchi,Progr. Opt. 25 (1988) 279.

  11. 11.

    S. A. Collins,J. Opt. Soc. Am. 60 (1970) 1168.

  12. 12.

    W. Shaomin, E. Bernabeu andJ. Alda,Appl. Opt. 30 (1991) 1584.

  13. 13.

    S. A. Collins,Appl. Opt. 3 (1964) 1263.

  14. 14.

    T. Li,Appl. Opt. 3 (1964) 1314.

  15. 15.

    J. Turunen,Appl. Opt. 25 (1986) 2908.

  16. 16.

    K. S. Lee,Appl. Opt. 25 (1986) 3671.

  17. 17.

    R. Ittländer andH. Weber,Opt. Acta 33 (1986) 1083.

  18. 18.

    E. Bernabeu andJ. Alda,Optik 79 (1988) 94.

  19. 19.

    M. D. Gunter andA. De Young,Appl. Opt. 25 (1986) 1742.

  20. 20.

    E. Bernabeu andJ. Alda,Optik 76 (1987) 108.

  21. 21.

    W. Shaomin, E. Bernabeu andJ. Alda,Appl. Opt. 30 (1991) 1585.

  22. 22.

    J. Alda, W. Shaomin andE. Bernabeu,Opt. Commun. 80 (1991) 350.

  23. 23.

    L. Qiang, W. Shaomin, J. Alda andE. Bernabeu,Optik 85 (1990) 67.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, S., Bernabeu, E. & Alda, J. Unified and generalized Fresnel numbers. Opt Quant Electron 24, 1351–1358 (1992). https://doi.org/10.1007/BF00625811

Download citation

Keywords

  • Optical System
  • Transfer Matrix
  • Gaussian Beam
  • Beam Propagation
  • Beam Parameter