Journal of Superconductivity

, Volume 6, Issue 3, pp 119–160 | Cite as

High-temperature superconducting microwave devices: Fundamental issues in materials, physics, and engineering

  • Nathan Newman
  • W. Gregory Lyons
Review

Abstract

High-Tcsuperconductivity has generated a great deal of interest because of the challenges it presents in the fields of material science, condensed matter physics, and electrical engineering, and because of the potential applications which may result from these research efforts. Thin-film passive microwave components may become the first high-temperature superconducting (HTS) devices available for widespread use and commercialization. In this article, we review aspects of material science, physics, and engineering which directly impact high-Tcsuperconducting microwave devices and discuss issues which determine the performance of these devices. Methods of growing HTS thin films on large-area substrates, techniques for fabricating single-level HTS passive microwave components, and the relevant properties of high-Tcsuperconducting films are discussed, with a focus on thin films of the HTS material YBa2Cu3O7−δ. Several known mechanisms for microwave loss in both the superconductor and the dielectric substrate are presented. An overview of the general classes of superconducting passive microwave devices is given, and representative microwave devices which have been recently demonstrated are described in detail. Examples of a select few HTS active microwave components are also presented. Potential microwave applications are illustrated with comparisons to current technology.

Key words

High-Tcsuperconductivity microwave devices thin films surface resistance microwave device fabrication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Bednorz and K. A. Mueller,Z. Phys. B 64, 189 (1986).Google Scholar
  2. 2.
    M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu,Phys. Rev. Lett. 58, 908 (1987); R. J. Cava, B. Batlogg, R. B. van Dover, D. W. Murphy, S. Sunshine, T. Siegrist, J. P. Remeika, E. A. Rietman, S. Zahurak, and G. P. Espinosa,Phys. Rev. Lett. 58, 1676 (1987).Google Scholar
  3. 3.
    H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano,Jpn. J. Appl. Phys. 27, L209 (1988).Google Scholar
  4. 4.
    Z. Z. Sheng, A. M. Hermann, A. E. Ali, C. Almasan, J. Estrada, T. Datta, and R. J. Matson,Phys. Rev. Lett. 60, 937 (1988); S. S. P. Parkin, V. Y. Lee, E. M. Engler, A. I. Nazzal, T. C. Huang, G. Gorman, R. Savoy, and R. Beyers,Phys. Rev. Lett. 60, 2539 (1988).Google Scholar
  5. 5.
    For a discussion on the current status of the microscopic theory of superconductivity in the new high-transition-temperature superconductors, see P. W. Anderson and R. Schrieffer,Phys. Today 44(6) 54 (1991).Google Scholar
  6. 6.
    For reviews of the physical properties of the new high-T csuperconductors, see B. Batlogg,Phys. Today 44(6), 44 (1991); D. M. Ginsberg, ed.,Physical Properties of High-Temperature Superconductors (World Scientific, Singapore, 1989 and 1990), Vols. I and II.Google Scholar
  7. 7.
    Proceedings of the Applied Superconductivity Conference, inIEEE Trans. Magn. 27, 814 (1991) andIEEE Trans. Appl. Supercond. 3, 51 (1993); special issue on microwave applications of superconductivity, inIEEE Trans. Microwave Theory Tech. 39, 1445 (1991); R. Simon,Phys. Today 44(6), 64 (1991).Google Scholar
  8. 8.
    For reviews of the fundamentals of the physics of superconductivity, see T. P. Orlando and K. A. Delin, Foundations of Applied Superconductivity (Addison-Wesley, Reading, Massachusetts, 1991) and M. Tinkham,Introduction to Superconductivity (McGraw Hill, New York, 1975); and at a more elementary level, A. C. Rose-Innes and F. H. Rhoderick,Introduction to Superconductivity (Pergamon, New York, 1969) and G. Burns,High-Temperature Superconductivity: An Introduction (Academic, San Diego, 1992).Google Scholar
  9. 9.
    Since the early 1960'sProc. IEEE has had three special issues on superconductivity:Proc. IEEE 52 (1964);Proc. IEEE 61 (1973);Proc. IEEE 77 (1989). It is interesting to see the greatly increased focus on applications in the latest special issue, as well as the optimism that high-T cmaterials will greatly ease the transition from the research laboratory into system applications.Google Scholar
  10. 10.
    For reviews of the fundamentals of superconductive devices, see T. Van Duzer and C. W. Turner,Principles of Superconductor Devices and Circuits (Elsevier, New York, 1981); and S. T. Ruggiero and D. A. Rudman, eds.,Superconducting Devices (Academic, Boston, 1990).Google Scholar
  11. 11.
    For reviews of passive microwave devices, see A. Septier and N. T. Viet,J. Phys. E 10, 1193 (1977); W. H. Hartwig,Proc. IEEE 61, 58 (1973); R. S. Withers and R. W. Ralston,Proc. IEEE 77, 1247 (1989).Google Scholar
  12. 12.
    For reviews of the chemistry of high-T cmaterials, see A. W. Sleight,Phys. Today 44(6), 24 (1991); J. B. Goodenough,Supercond. Sci. Technol. 3, 26 (1990); B. Raveau, C. Michel, M. Hervieu, and D. Groult,Crystal Chemistry of High-T c Superconducting Copper Oxides (Springer-Verlag, Berlin, 1991).Google Scholar
  13. 13.
    V. B. Braginsky, V. P. Mitrofanov, and V. I. Panov,Systems with Small Dissipation (University of Chicago Press, Chicago, 1985).Google Scholar
  14. 14.
    P. Chaudhari, R. H. Koch, R. B. Laibowitz, T. R. McGuire, and R. J. Gambino,Phys. Rev. Lett. 58, 2684 (1987); T. R. Dinger, T. K. Worthington, W. J. Gallagher, and R. L. Sandstrom,Phys. Rev. Lett. 58, 2687 (1987); B. Oh, M. Naito, S. Arnason, P. Rosenthal, R. Barton, M. R. Beasley, T. H. Geballe, R. H. Hammond, and A. Kapitulnik,Appl. Phys. Lett. 51, 852 (1987).Google Scholar
  15. 15.
    R. H. Koch, C. P. Umbach, G. J. Clark, P. Chaudhari, and R. B. Laibowitz,Appl. Phys. Lett. 51, 200 (1987); C. E. Gough, M. S. Colclough, E. M. Forgan, R. G. Jordan, M. Keene, C. M. Muirhead, A. I. M. Rae, N. Thomas, J. S. Abell, and S. Sutton,Nature (London) 326, 855 (1987); P. L. Gammel, D. J Bishop, G. J. Dolan, J. R. Kwo, C. A. Murray, L. F. Schneemeyer, and J. V. Waszczak,Phys. Rev. Lett. 59, 2592 (1987).Google Scholar
  16. 16.
    D. R. Harshman, G. Aeppli, E. J. Ansaldo, B. Batlogg, J. H. Brewer, J. F. Carolan, R. J. Cava, M. Celio, A. C. D. Chaklader, W. N. Hardy, S. R. Kreitzman, G. M. Luke, D. R. Noakes, and M. Senba,Phys. Rev. B 36, 2386 (1987); A. T. Fiory, A. F. Hebard, P. M. Mankiewich, and R. E. Howard,Phys. Rev. Lett. 61, 1419 (1988); L. Krusin-Elbaum, R. L. Greene, F. Holtzberg, A. P. Malozemoff, and Y. Yeshurun,Phys. Rev. Lett. 62, 217 (1989).Google Scholar
  17. 17.
    D. L. Rubin, K. Green, J. Gruschus, J. Kirchgessner, D. Moffat, H. Padamsee, J. Sears, Q. S. Shu, L. F. Schneemeyer, and J. V. Waszczak,Phys. Rev. B 38, 6538 (1988); D.-H. Wu, W. L. Kennedy, C. Zahopoulos, and S. Sridhar,Appl. Phys. Lett. 55, 696 (1989).Google Scholar
  18. 18.
    N. Klein, G. Mueller, S. Orbach, H. Piel, H. Chaloupka, B. Roas, L. Schultz, U. Klein, and M. Peiniger,Physica C 162–164, 1549 (1989); N. Klein, G. Mueller, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger,Appl. Phys. Lett. 54, 757 (1989).Google Scholar
  19. 19.
    A. Inam, X. D. Wu, L. Nazar, M. S. Hegde, C. T. Rogers, T. Venkatesan, R. W. Simon, K. Daly, H. Padamsee, J. Kirchgessner, D. Moffat, D. Rubin, Q. S. Shu, D. Kalokitis, A. Fathy, V. Pendrick, R. Brown, B. Brycki, E. Belohoubek, L. Drabeck, G. Gruner, R. Hammond, F. Gamble, B. M. Lairson, and J. C. Bravman,Appl. Phys. Lett. 56, 1178 (1990).Google Scholar
  20. 20.
    N. Newman, K. Char, S. M. Garrison, R. W. Barton, R. C. Taber, C. B. Eom, T. H. Geballe, and B. Wilkens,Appl. Phys. Lett. 57, 520 (1990).Google Scholar
  21. 21.
    For a complete review of HTS surface resistance results, see H. Piel and G. Mueller,IEEE Trans. Magn. 27, 854 (1991).Google Scholar
  22. 22.
    H. Piel, H. Chaloupka, and G. Mueller, inAdvances in Superconductivity IV, H. Hayakawa and N. Koshizuka, eds. (Springer-Verlag, Tokyo, 1992), pp. 925–930.Google Scholar
  23. 23.
    D. R. Dykaar, R. Sobolewski, J. M. Chwalek, J. F. Whitaker, T. Y. Hsiang, G. A. Mourou, D. K. Lathrop, S. E. Russek, and R. A. Buhrman,Appl. Phys. Lett. 52, 1444 (1988); M. C. Nuss, P. M. Mankiewich, R. E. Howard, B. L. Straughn, T. E. Harvey, C. D. Brandle, G. W. Berkstresser, K. W. Goossen, and P. R. Smith,Appl. P hys. Lett. 54, 2265 (1989).Google Scholar
  24. 24.
    D. Miller, P. L. Richards, S. M. Garrison, N. Newman, C. B. Eom, T. H. Geballe, S. Etemad, A. Inam, T. Venkatesan, J. S. Martens, W. Y. Lee, and L. C. Bourne,J. Supercond. 5, 379 (1992).Google Scholar
  25. 25.
    G. Matthaei, L. Young, and E. M. T. Jones,Microwave Filters, Impedance-Matching Networks, and Coupling Structures (Artech House, Norwood, Massachusetts, 1980).Google Scholar
  26. 26.
    Special issue on satellite communications,Proc. IEEE 78, 1033–1312 (1990).Google Scholar
  27. 27.
    D. M. Pozar,Microwave Engineering (Addison-Wesley, Reading, Massachusetts, 1990).Google Scholar
  28. 28.
    H. Howe,Stripline Circuit Design (Artech House, Dedham, Massachusetts, 1974).Google Scholar
  29. 29.
    D. A. Bonn, P. Dosanjh, R. Liang, and W. N. Hardy,Phys. Rev. Lett. 68, 2390 (1992).Google Scholar
  30. 30.
    B. Roas, L. Schultz, and G. Endres,Appl. Phys. Lett. 53, 1557 (1988).Google Scholar
  31. 31.
    N. Newman, B. F. Cole, S. M. Garison, K. Char, and R. C. Taber,IEEE Trans. Magn. 27, 1276 (1991).Google Scholar
  32. 32.
    C. B. Eom, J. Z. Sun, K. Yamamoto, A. F. Marshall, K. E. Luther, T. H. Geballe, and S. S. Laderman,Appl. Phys. Lett. 55, 595 (1989).Google Scholar
  33. 33.
    C. B. Eom, J. Z. Sun, B. M. Lairson, S. K. Streiffer, A. F. Marshall, K. Yamamoto, S. M. Anlage, J. C. Bravman, T. H. Geballe, S. S. Laderman, and R. C. Taber,Physica C 171, 354 (1990).Google Scholar
  34. 34.
    R. Ramesh, D. M. Hwang, T. Venkatesan, T. S. Ravi, L. Nazar, A. Inam, X. D. Wu, B. Dutta, G. Thomas, A. F. Marshall, and T. H. Geballe,Science 247, 57 (1990); R. Ramesh, D. M. Hwang, J. B. Barner, L. Nazar, T. S. Ravi, A. Inam, B. Dutta, X. D. Wu, and T. Venkatesan,J. Mater. Res. 5, 704 (1990); R. Ramesh, A. Inam, D. M. Hwang, T. S. Ravi, T. Sands, X. X. Xi, X. D. Wu, Q. Li, T. Venkatesan, and R. Kilaas,J. Mater. Res. 6, 2264 (1991).Google Scholar
  35. 35.
    M. Hawley, I. D. Raistrick, J. G. Beery, and R. J. Houlton, Science251, 1587 (1991).Google Scholar
  36. 36.
    M. Fendor, M. E. Tidjani, C. P. Burmester, L. T. Wille, and R. Gronsky, inHigh-T c Superconductor Thin Films, L. Correra, ed. (Elsevier, New York, 1992).Google Scholar
  37. 37.
    P. H. Ballentine, A. M. Kadin, and D. S. Mallory,IEEE Trans. Magn. 27, 997 (1991).Google Scholar
  38. 38.
    S. R. Foltyn, R. E. Muenchausen, R. C. Dye, X. D. Wu, L. Luo, D. W. Cooke, and R. C. Taber,Appl. Phys. Lett. 59, 1374 (1991).Google Scholar
  39. 39.
    T. T. Braggins, J. R. Gavaler, and J. Talvacchio, inAdvances in Cryogenic Engineering (Materials), F. R. Fickett and R. P. Reed, eds. (Plenum, New York, 1992), pp. 1013–1018.Google Scholar
  40. 40.
    N. Newman and J. Martens (unpublished).Google Scholar
  41. 41.
    R. H. Hammond and R. Bormann,Physica C 162–164, 703 (1989).Google Scholar
  42. 42.
    S. S. Laderman, R. C. Taber, R. D. Jacowitz, J. L. Moll, C. B. Eom, T. L. Hylton, A. F. Marshall, T. H. Geballe, and M. R. Beasley,Phys. Rev. B 43, 2922 (1991).Google Scholar
  43. 43.
    T. B. Lindemer, F. A. Washburn, C. S. MacDougall, R. Feenstra, and O. B. Cavin,Physica C 178, 93 (1991); R. Feenstra, T. B. Lindemer, J. D. Budai, and M. D. Galloway,J. Appl. Phys. 69, 6569 (1991); B. T. Ahn, V. Y. Lee, R. Beyers, T. M. Guer, and R. A. Huggins,Physica C 167, 529 (1990).Google Scholar
  44. 44.
    N. Missert, R. Hammond, J. E. Mooij, V. Matijasevic, P. Rosenthal, T. H. Geballe, A. Kapitulnik, M. R. Beasley, S. S. Laderman, C. Lu, E. Garwin, and R. Barton,IEEE Trans. Magn. 25, 2418 (1989); R. G. Humphreys, N. G. Chew, J. S. Satchell, S. W. Goodyear, J. A. Edwards, and S. E. Blenkinsop,IEEE Trans. Appl. Supercond. 27, 1357 (1991).Google Scholar
  45. 45.
    N. Newman, J. Ross, and M. Rubin,Appl. Phys. Lett. 62, 1242 (1993).Google Scholar
  46. 46.
    M. B. Brodsky,MRS Bull, May 1991, p. 31; and references therein.Google Scholar
  47. 47.
    S. J. Rothman, J. L. Routbort, and J. E. Baker,Phys. Rev. B 40, 8852 (1991).Google Scholar
  48. 48.
    C. H. Chen, J. Kwo, and M. Hong,Appl. Phys. Lett. 52, 841 (1988).Google Scholar
  49. 49.
    T. Venkatesan, X. D. Wu, B. Dutta, A. Inam, M. S. Hegde, D. M. Hwang, C. C. Chang, L. Nazar, and B. Wilkens,Appl. Phys. Lett. 54, 581 (1989); G. Koren, A. Gupta, R. J. Baseman, M. I. Lutwyche, and R. B. Laibowitz,Appl. Phys. Lett. 55, 2450 (1989).Google Scholar
  50. 50.
    R. L. Sandstrom, W. J. Gallagher, T. R. Dinger, R. H. Koch, R. B. Laibowitz, A. W. Kleinsasser, R. J. Gambino, B. Bumble, and M. F. Chisholm,Appl. Phys. Lett. 53, 444 (1988).Google Scholar
  51. 51.
    R. Hiskes, S. A. DiCarolis, J. L. Young, S. S. Laderman, R. D. Jacowitz, and R. C. Taber,Appl. Phys. Lett. 59, 606 (1991).Google Scholar
  52. 52.
    J. Kwo, M. Hong, D. J. Trevor, R. M. Fleming, A. E. White, R. C. Farrow, A. R. Kortan, and K. T. Short,Appl. Phys. Lett. 53, 2683 (1988).Google Scholar
  53. 53.
    P. M. Mankiewich, J. H. Scofield, W. J. Skocpol, R. E. Howard, A. H. Dayem, and E. Good,Appl. Phys. Lett. 51, 1753 (1987).Google Scholar
  54. 54.
    W. G. Lyons, R. R. Bonetti, A. E. Williams, P. M. Mankiewich, M. L. O'Malley, J. M. Hamm, A. C. Anderson, R. S. Withers, A. Meulenberg, and R. E. Howard,IEEE Trans. Magn. 27, 2537 (1991).Google Scholar
  55. 55.
    J. M. Phillips and M. P. Siegal, inSuperconductivity and Its Applications, Y. H. Kao, A. E. Kaloyeros, and H. S. Kwok, eds. (American Institute of Physics, New York, 1992), Vol. 251, pp. 44–52; A. Mogro-Campero and L. G. Turner,ibid., pp. 62–67.Google Scholar
  56. 56.
    X. D. Wu, A. Inam, T. Venkatesan, C. C. Chang, E. W. Chase, P. Barboux, J. M. Tarascon, and B. Wilkens,Appl. Phys. Lett. 52, 754 (1988).Google Scholar
  57. 57.
    J. A. Greer,J. Vac. Sci. Technol. A 10, 1821 (1992).Google Scholar
  58. 58.
    D. M. Hwang, L. Nazar, T. Venkatesan, and X. D. Wu,Appl. Phys. Lett. 52, 1834 (1988).Google Scholar
  59. 59.
    M. G. Norton, L. A. Tietz, S. R. Summerfeit, and C. B. Carter,Appl. Phys. Lett. 55, 2348 (1989).Google Scholar
  60. 60.
    S. M. Rossnagel and J. J. Cuomo, inThin Film Processing and Characterization of High-Temperature Superconductors, J. M. E. Harper, R. J. Colton, and L. C. Feldman, eds. (American Institute of Physics, New York, 1988), Vol. 165, pp. 106–113.Google Scholar
  61. 61.
    Q. Li, O. Meyer, X. X. Xi, J. Geerk, and G. Linker,Appl. Phys. Lett. 55, 310 (1989); X. X. Xi, G. Linker, O. Meyer, E. Nold, B. Obst, F. Ratzel, R. Smithey, B. Strehlau, F. Weschenfelder, and J. Geerk,Z. Phys. B 74, 13 (1989).Google Scholar
  62. 62.
    J. Geerk, G. Linker, and O. Meyer,J. Supercond. 5, 345 (1992).Google Scholar
  63. 63.
    A. C. Westerheim, L. S. Yu-Jahnes, and A. C. Anderson,IEEE Trans. Magn. 27, 1001 (1991).Google Scholar
  64. 64.
    N. Savvides and A. Katsaros,Appl. Phys. Lett. 62, 528 (1993); A. C. Anderson, private communication.Google Scholar
  65. 65.
    J. Talvacchio, M. G. Forrester, J. R. Gavaler, and T. T. Braggins, inScience and Technology of Thin Film Superconductors, R. D. McConnell and R. Noufi, eds. (Plenum, New York, 1990), Vol. 2, pp. 57–66; J. R. Gavaler and J. Talvacchio,Physica B 165-166, 1513 (1990).Google Scholar
  66. 66.
    U. Poppe, N. Klein, U. Dahne, H. Soltner, C. L. Jia, B. Kabius, K. Urban, A. Lubig, K. Schmidt, S. Hensen, S. Orbach, G. Mueller, and H. Piel,J. Appl. Phys. 71, 5572 (1992); U. Poppe, J. Schubert, R. R. Arons, W. Evers, C. H. Freiburg, W. Reichert, K. Schmidt, W. Sybertz, and K. Urban,Solid State Commun. 66, 661 (1988).Google Scholar
  67. 67.
    R. P. Vasquez, B. D. Hunt, and M. C. Foote,Appl. Phys. Lett. 53, 2692 (1988).Google Scholar
  68. 68.
    F. K. Shokoohi, L. M. Schiavone, C. T. Rogers, A. Inam, X. D. Wu, L. Nazar, and T. Venkatesan,Appl. Phys. Lett. 55, 2661 (1990).Google Scholar
  69. 69.
    J. A. Beall, M. W. Cromar, T. E. Harvey, and M. E. Johansson,IEEE Trans. Magn. 27, 1596 (1991).Google Scholar
  70. 70.
    J. J. Kingston, F. C. Wellstood, P. Lerch, A. H. Micklich, and J. Clarke,Appl. Phys. Lett. 56, 189 (1990).Google Scholar
  71. 71.
    W. Eidelloth, W. J. Gallagher, R. P. Robertazzi, R. H. Koch, and B. Oh,Appl. Phys. Lett. 59, 1257 (1991); W. Eidelloth and R. L. Sandstrom,Appl. Phys. Lett. 59, 1634 (1991).Google Scholar
  72. 72.
    J. Mannhart, M. Scheuermann, C. C. Tsuei, M. M. Oprysko, C. C. Chi, C. P. Umbach, R. H. Koch, and C. Miller,Appl. Phys. Lett. 52, 1271 (1988); R. G. Humphreys, J. S. Satchell, N. G. Chew, and J. A. Edwards,Appl. Phys. Lett. 54, 75 (1989); A. Inam, X. D. Wu, T. Venkatesan, S. B. Ogale, C. C. Chang, and D. Dijkkamp,Appl. Phys. Lett. 51, 1112 (1987).Google Scholar
  73. 73.
    L. Alff, G. M. Fischer, R. Gross, F. Kober, A. Beck, K. D. Husemann, T. Nissel, F. Schmidl, and C. Burckhardt,Physica C 200, 277 (1992); and references therein.Google Scholar
  74. 74.
    D. Kalokitis, A. Fathy, V. Pendrick, R. Brown, B. Brycki, E. Belohoubek, L. Nazar, B. Wilkens, T. Venkatesan, A. Inam, and X. D. Wu,J. Electron. Mater. 19, 117 (1990).Google Scholar
  75. 75.
    W. M. Moreau,Semiconductor Lithography: Principles, Practices, and Materials (Plenum, New York, 1988).Google Scholar
  76. 76.
    W. G. Lyons, R. S. Withers, J. M. Hamm, A. C. Anderson, P. M. Mankiewich, M. L. O'Malley, and R. E. Howard,IEEE Trans. Magn. 27, 2932 (1991).Google Scholar
  77. 77.
    J. W. Ekin, T. M. Larson, N. F. Bergren, A. J. Nelson, A. B. Swartzlander, L. L. Kazmerski, A. J. Panson, and B. A. Blankenship,Appl. Phys. Lett. 52, 1819 (1991).Google Scholar
  78. 78.
    J. W. Ekin, S. E. Russek, C. C. Clickner, and B. Jeanneret,Appl. Phys. Lett. 62, 369 (1993).Google Scholar
  79. 79.
    R. L. Sandstrom, E. A. Geiss, W. J. Gallagher, A. Segmuller, E. I. Cooper, M. F. Chisholm, A Gupta, S. Shinde, and R. B. Laibowitz,Appl. Phys. Lett. 53, 1874 (1988).Google Scholar
  80. 80.
    R. W. Simon, C. E. Platt, A. E. Lee, G. S. Lee, K. P. Daly, M. S. Wire, J. A. Luine, and M. Urbanik,Appl. Phys. Lett. 53, 2677 (1988); the dielectric constant of LaAlO3 is incorrectly reported in this paper as 15. The actual value is approximately 24 at room temperature and 23.5 at 77 K.Google Scholar
  81. 81.
    S. M. Garrison, N. Newman, B. F. Cole, K. Char, and R. W. Barton,Appl. Phys. Lett. 58, 2168 (1991).Google Scholar
  82. 82.
    R. Sobolewski, P. Gierlowski, W. Kula, S. Zarembinski, S. J. Lewandowski, M. Berkowski, A. Pajaczkowska, B. P. Gorshunov, D. B. Lyudmirsky, and O. I. Sirotinsky,IEEE Trans. Magn. 27, 876 (1991).Google Scholar
  83. 83.
    T. Konaka, M. Sato, H. Asano, and S. Kubo,J. Supercond. 4, 283 (1991).Google Scholar
  84. 84.
    J. Konopka and I. Wolff,IEEE Trans. Microwave Theory Tech. 40, 2418 (1992).Google Scholar
  85. 85.
    K. Char, N. Newman, S. M. Garrison, R. W. Barton, R. C. Taber, S. S. Laderman, and R. D. Jacowitz,Appl. Phys. Lett. 57, 409 (1990).Google Scholar
  86. 86.
    P. Merchant, R. D. Jacowitz, K. Tibbs, R. C. Taber, and S. S. Laderman,Appl. Phys. Lett. 60, 763 (1992).Google Scholar
  87. 87.
    B. F. Cole, G.-C. Liang, N. Newman, K. Char, G. Zaharchuk, and J. S. Martens,Appl. Phys. Lett. 61, 1727 (1992).Google Scholar
  88. 88.
    B. H. Moekly, D. K. Lathrop, S. E. Russek, R. A. Buhrman, M. G. Norton, and C. B. Carter,IEEE Trans. Magn. 27, 1017 (1991).Google Scholar
  89. 89.
    X. D. Wu, S. R. Foltyn, R. E. Muenchausen, D. W. Cooke, A. Pique, D. Kalokitis, V. Pendrick, and E. Belohoubek,J. Supercond. 5, 353 (1992).Google Scholar
  90. 90.
    W. G. Lyons, R. R. Bonetti, A. E. Williams, P. M. Mankiewich, M. L. O'Malley, J. M. Hamm, A. C. Anderson, R. S. Withers, A. Meulenberg, and R. E. Howard, presented at the 1990 Applied Superconductivity Conference, Aspen, Colorado, August 1990.Google Scholar
  91. 91.
    D. Reagor and F. Garzon,Appl. Phys. Lett. 58, 2741 (1991).Google Scholar
  92. 92.
    D. Mateika, H. Kohler, H. Laudan, and E. Volkel,J. Cryst. Growth 109, 447 (1991).Google Scholar
  93. 93.
    R. E. Fahey, A. J. Strauss, and A. C. Anderson,J. Crystal. Growth 128, 672 (1993); C. D. Brandie, personal communication.Google Scholar
  94. 94.
    J. M. Pond, K. R. Carroll, J. S. Horwitz, D. B. Chrisey, M. S. Osofsky, and V. C. Cestone,Appl. Phys. Lett. 59, 3033 (1991).Google Scholar
  95. 95.
    JU. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).Google Scholar
  96. 96.
    D. C. Mattis and J. Bardeen,Phys. Rev. 111, 412 (1958).Google Scholar
  97. 97.
    A. A. Abrikosov, L. P. Gor'kov, and I. M. Khalatnikov,sov. Phys. JETP 8, 182 (1959).Google Scholar
  98. 98.
    J. P. Turneaure, J. Halbritter, and H. A. Schwettman,J. Supercond. 4, 341 (1991); J. P. Turneaure and J. Weissman,J. Appl. Phys. 39, 4417 (1968).Google Scholar
  99. 99.
    J. Halbritter,Z. Phys. 266, 209 (1974); J. Halbritter,Z. Phys. 238, 466 (1970); J. Halbritter., “Fortran program for the computation of the surface impedance of superconductors,” inExterner Bericht (Institut fur Experimentelle Kernphysik, Karlsruhe, Germany, 1970), Vol. 370–6.Google Scholar
  100. 100.
    C. J. Gorter and H. G. B. Casimir,Phys. Z. 35, 963 (1934); H. London,Nature (London) 133, 497 (1934); H. London,Proc. R. Soc. London, Ser. A 176, 522 (1940).Google Scholar
  101. 101.
    J.-J. Chang and D. J. Scalapino,Phys. Rev. B 40, 4299 (1989).Google Scholar
  102. 102.
    K. I. Wysokinski and T. Domanski,Phys. Rev. B 45, 5005 (1992).Google Scholar
  103. 103.
    N. Klein, U. Dahne, U. Poppe, N. Tellmann, K. Urban, S. Orbach, S. Hensen, G. Mueller, and H. Piel,J. Supercond. 5, 195 (1992); N. Klein, U. Poppe, N. Tellmann, H. Schulz, W. Evers, U. Dahne, and K. Urban,IEEE Trans. Appl. Superconduct. 3, 1102 (1993).Google Scholar
  104. 104.
    T. L. Hylton, A. Kapitulnik, M. R. Beasley, J. P. Carini, L. Drabeck, and G. Gruner,Appl. Phys. Lett. 53, 1343 (1988).Google Scholar
  105. 105.
    D. Dimos, P. Chaudhari, J. Mannhart, and F. K. LeGoues,Phys. Rev. Lett. 61, 219 (1988).Google Scholar
  106. 106.
    Z. G. Ivanov, P. Å. Nilsson, D. Winkler, J. A. Alarco, T. Claeson, E. A. Stepantsov, and A. Ya. Tzalenchuk,Appl. Phys. Lett. 59, 3030 (1991).Google Scholar
  107. 107.
    D. Walker and K. Scharnberg,Phys. Rev. B 42, 2211 (1990).Google Scholar
  108. 108.
    J. Zaanen, A. T. Paxton, O. Jepson, and O. K. Anderson,Phys. Rev. Lett. 60, 2685 (1988).Google Scholar
  109. 109.
    L. D. Rotter, Z. Schlesinger, R. T. Collins, F. Holtzberg, C. Field, U. W. Welp, G. W. Crabtree, J. Z. Liu, Y. Fang, K. G. Vandervoort, and S. Fleshier,Phys. Rev. Lett. 67, 2741 (1991).Google Scholar
  110. 110.
    J. L. Cohn, S. A. Wolf, V. Selvamanickam, and K. Salama,Phys. Rev. Lett. 66, 1098 (1991).Google Scholar
  111. 111.
    S. E. Barrett, D. J. Durand, C. H. Pennington, C. P. Slichter, T. A. Friedmann, J. P. Rice, and D. M. Ginsberg,Phys. Rev. B 41, 6283 (1990).Google Scholar
  112. 112.
    V. Z. Kresin, S. A. Wolf, and G. Deutscher,Physica C 191, 9 (1992); V. Z. Kresin, S. A. Wolf, and G. Deutscher,Mater. Sci. Eng. B 12, 365 (1992).Google Scholar
  113. 113.
    A. Andreone, V. Z. Kresin, and S. A. Wolf,J. Supercond. 5, 339 (1992).Google Scholar
  114. 114.
    S. M. Anlage and D.-H. Wu,J. Supercond. 5, 395 (1992); S. M. Anlage, B. W. Langley, G. Deutscher, J. Halbritter, and M. R. Beasley,Phys. Rev. B 44, 9764 (1991); S. M. Anlage, B. W. Langley, H. J. Snortland, C. B. Eom, T. H. Geballe, and M. R. Beasley,J. Supercond. 3, 311 (1990).Google Scholar
  115. 115.
    R. McCormack, D. de Fontaine, and G. Ceder,Phys. Rev. B 45, 12976 (1992).Google Scholar
  116. 116.
    W. L. Holstein, L. A. Parisi, D. J. Kountz, C. Wilker, A. L. Matthews, P. N. Arendt, and R. C. Taber,IEEE Trans. Magn. 27, 1568 (1991); R. W. Lee and N. Newman (unpublished).Google Scholar
  117. 117.
    J. I. Gittleman and B. Rosenblum,Proc. IEEE 52, 1138 (1964).Google Scholar
  118. 118.
    J. R. Delayen, K. C. Goretta, R. B. Poeppel, and K. W. Shepard,Appl. Phys. Lett. 52, 930 (1988); D.-H. Wu, C. A. Shiffman, and S. Sridhar,Phys. Rev. B 38, 9311 (1988).Google Scholar
  119. 119.
    J. R. Delayen, C. L. Bohn, and C. T. Roche,J. Supercond. 3, 243 (1990); J. R. Delayen, C. L. Bohn, and C. T. Roche,Rev. Sci. Instrum. 61, 2207 (1990).Google Scholar
  120. 120.
    D. E. Oates, P. P. Nguyen, G. Dresselhaus, M. S. Dresselhaus, C. W. Lam, and S. M. Ali,J. Supercond. 5, 361 (1992).Google Scholar
  121. 121.
    A. M. Portis,J. Supercond. 5, 319 (1992); A. M. Portis and D. W. Cooke,Supercond. Sci. Technol. 5, S395 (1992); A. M. Portis, Electrodynamics of High-Temperature Superconductors (World Scientific, Singapore, 1993).Google Scholar
  122. 122.
    D. E. Oates, A. C. Anderson, D. M. Sheen, and S. M. Ali,IEEE Trans. Microwave Theory Tech. 39, 1522 (1991).Google Scholar
  123. 123.
    D. E. Oates and A. C. Anderson (unpublished).Google Scholar
  124. 124.
    C.-W. Lam, D. M. Sheen, S. M. Ali, and D. E. Oates,IEEE Trans. Appl. Supercond. 2, 58 (1992).Google Scholar
  125. 125.
    C. Attanasio, L. Mariato, and R. Vaglio,Phys. Rev. B 43, 6128 (1991); P. P. Nguyen, D. E. Oates, G. Dresselhaus, and M. S. Dresselhaus, to be publishedPhys. Rev. B (1993).Google Scholar
  126. 126.
    J. Halbritter,J. Supercond. 5, 331 (1992); J. Halbritter,J. Appl. Phys. 71, 339 (1992).Google Scholar
  127. 127.
    C. Gough, inSuperconducting Technology: 10 Case Studies, K. Fossheim, ed. (World Scientific, Singapore, 1991), pp. 87–111.Google Scholar
  128. 128.
    D. E. Oates, W. G. Lyons, and A. C. Anderson, in Proceedings of the 45th Annual Symposium on Frequency Control (IEEE, New York, 1991), pp. 460–466.Google Scholar
  129. 129.
    V. L. Gurevich,Kinetics of Phonon Systems (Nauka, Moscow, 1980); V. L. Gurevich,Fiz. Tverd. Tela 21, 345 (1979).Google Scholar
  130. 130.
    V. B. Braginsky, Kh. S. Bagdasonov, V. I. Panov, and V. S. Ilchenko,Usp. Fiz. Nauk 145, 151 (1985).Google Scholar
  131. 131.
    S. Ramo, J. R. Whinnery, and T. Van Duzer,Fields and Waves in Communication Electronics (Wiley, New York, 1984).Google Scholar
  132. 132.
    J. D. Jackson,Classical Electrodynamics (Wiley, New York, 1962).Google Scholar
  133. 133.
    A. Abragam and B. Bleaney,Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970); C. P. Poole, Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques (Wiley, New York, 1983).Google Scholar
  134. 134.
    R. S. Alger,Electron Paramagnetic Resonance: Techniques and Applications (Interscience, New York, 1968).Google Scholar
  135. 135.
    A. Veilsteke,Foundations of Quantum-Mechanical Amplifiers and Generators (IL, Moscow, 1963).Google Scholar
  136. 136.
    I. S. Zheludev,Physics of Crystalline Dielectrics. Vol. 2: Dielectric Properties (Plenum, New York, 1971).Google Scholar
  137. 137.
    R. C. Taber,Rev. Sci. Instrum. 61(8), 2200 (1990).Google Scholar
  138. 138.
    J. S. Martens, V. M. Hietala, D. S. Ginley, T. E. Zipperian, and G. K. G. Hohenwarter,Appl. Phys. Lett. 58, 2543 (1991).Google Scholar
  139. 139.
    L. Drabeck, K. Holczer, G. Gruner, J.-J. Chang, D. J. Scalapino, A. Inam, X. D. Wu, L. Nazar, and T. Venkatesan,Phys. Rev. B 42, 10020 (1990); L. Drabeck, H. Gruner, J.-J. Chang, A. Inam, X. D. Wu, L. Nazar, T. Venkatesan, and D. J. Scalapino,Phys. Rev. B 40, 7350 (1989).Google Scholar
  140. 140.
    D. W. Cooke, E. R. Gray, R. J. Houlton, B. Rusnak, E. A. Meyer, J. G. Berry, D. R. Brown, F. H. Garzon, I. D. Raistrick, A. D. Rollett, and R. Bolmaro,Appl. Phys. Lett. 55, 914 (1989).Google Scholar
  141. 141.
    S. Sridhar and W. L. Kennedy,Rev. Sci. Instrum. 59, 531 (1988).Google Scholar
  142. 142.
    M. S. DiIorio, A. C. Anderson, and B.-Y. Tsaur,Phys. Rev. B 38, 7019 (1988).Google Scholar
  143. 143.
    D. E. Oates, A. C. Anderson, and P. M. Mankiewich,J. Supercond. 3, 251 (1990).Google Scholar
  144. 144.
    W. Rauch, E. Gornik, G. Solkner, A. A. Valenzuela, F. Fox, and H. Behner,J. Appl. Phys. 73, 1866 (1993).Google Scholar
  145. 145.
    D. M. Sheen, S. M. Ali, D. E. Oates, R. S. Withers, and J. A. Kong,IEEE Trans. Appl. Supercond. 1, 108 (1991).Google Scholar
  146. 146.
    L. H. Lee, S. M. Ali, and W. G. Lyons,IEEE Trans. Appl. Supercond. 2, 49 (1992).Google Scholar
  147. 147.
    L. H. Lee, S. M. Ali, W. G. Lyons, D. E. Oates, and J. G. Goettee,IEEE Trans. Appl. Supercond. 3, 2782 (1993).Google Scholar
  148. 148.
    R. C. Taber, J. N. Hollenhorst, L. S. Cutler, T. L. Bagwell, N. Newman, and B. F. Cole,IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 398 (1992).Google Scholar
  149. 149.
    D. G. Blair and S. Jones,IEEE Trans. Magn. 21, 142 (1985).Google Scholar
  150. 150.
    Y. Kobayashi, T. Aoki, and Y. Kabe,IEEE Trans. Microwave Theory Tech. MTT-33, 1361 (1985).Google Scholar
  151. 151.
    J. Krupka,IEEE Trans. Microwave Theory Tech. MTT-33, 274 (1985).Google Scholar
  152. 152.
    K. A. Zaki and C. Chen,IEEE Trans. Microwave Theory Tech. MTT-34, 815 (1986).Google Scholar
  153. 153.
    R. C. Taber, private communication.Google Scholar
  154. 154.
    Z.-Y. Shen, C. Wilker, P. Pang, and W. L. Holstein, in 1992 IEEE International Microwave Symposium Digest (IEEE, New York, 1992), Vol. 1, pp. 193–196.Google Scholar
  155. 155.
    G. J. Dick and J. Saunders,IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 339 (1990).Google Scholar
  156. 156.
    D. E. Oates, A. C. Anderson, and B. S. Shih, in 1989 IEEE International Microwave Symposium Digest (IEEE, New York, 1989), Vol. 2, pp. 627–630.Google Scholar
  157. 157.
    M. M. Driscoll, J. T. Haynes, R. A. Jelen, R. W. Weinert, J. R. Gavaler, J. Talvacchio, G. R. Wagner, K. A. Zaki, and X.-P. Liang,IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 405 (1992).Google Scholar
  158. 158.
    W. P. Robins,Phase Noise in Signal Sources: Theory and Applications (Peter Peregrinus, London, 1982).Google Scholar
  159. 159.
    S. R. Stein and J. P. Turneaure,Proc. IEEE 63, 1249 (1975); S. R. Stein and J. P. Turneaure,Future Trends in Superconductive Electronics, B. S. Deaver, C. M. Falco, J. H. Harris, and S. A. Wolf, eds. (American Institute of Physics, New York, 1978), pp. 192–213.Google Scholar
  160. 160.
    T. E. Parker, in Proceedings of the 41st Annual Symposium on Frequency Control (IEEE, New York, 1987), pp. 99–110.Google Scholar
  161. 161.
    G. K. Montress, T. E. Parker, M. J. Loboda, and J. A. Greer,IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 657 (1988).Google Scholar
  162. 162.
    Z.-Y. Shen, P. Pang, C. Wilker, D. B. Laubacher, W. L. Holstein, C. F. Carter, and M. Adlerstein,IEEE Trans. Appl. Supercond. 3, 2832 (1993).Google Scholar
  163. 163.
    W. G. Lyons, R. S. Withers, J. M. Hamm, A. C. Anderson, P. M. Mankiewich, M. L. O'Malley, R. E. Howard, R. R. Bonetti, A. E. Williams, and N. Newman, in 1991 IEEE International Microwave Symposium Digest (IEEE, New York, 1991), Vol. 3, pp. 1227–1230.Google Scholar
  164. 164.
    J. C. Ritter, M. Nisenoff, G., Price, and S. A. Wolf,IEEE Trans. Magn. 27, 2533 (1991).Google Scholar
  165. 165.
    A. Fathy, D. Kalokitis, and E. Belohoubek, in 1991 IEEE International Microwave Symposium Digest (IEEE, New York, 1991), Vol. 3, pp. 1329–1332.Google Scholar
  166. 166.
    S. H. Talisa, M. A. Janocko, C. Moskowitz, J. Talvacchio, J. F. Billing, R. Brown, D. C. Buck, C. K. Jones, B. R. McAvoy, G. R. Wagner, and D. H. Watt,IEEE Trans. Microwave Theory Tech. 39, 1448 (1991).Google Scholar
  167. 167.
    H. S. Newman, D. B. Chrisey, J. S. Horwitz, B. D. Weaver, and M. E. Reeves,IEEE Trans. Magn. 27, 2540 (1991).Google Scholar
  168. 168.
    D. B. Rensch, J. Y. Josefowicz, P. Macdonald, C. W. Nieh, W. Hoefer, and F. Krajenbrink,IEEE Trans. Magn. 27, 2553 (1991).Google Scholar
  169. 169.
    J. A. Curtis and S. J. Fiedziuszko, in 1991 IEEE International Microwave Symposium Digest (IEEE, New York, 1991), Vol. 2, pp. 443–446.Google Scholar
  170. 170.
    S. J. Fiedziuszko, private communication.Google Scholar
  171. 171.
    J. A. Curtis, S. J. Fiedziuszko, and S. C. Holme, in 1991 IEEE International Microwave Symposium Digest (IEEE, New York, 1991), Vol. 2, pp. 447–450.Google Scholar
  172. 172.
    D. Kalokitis, A. Fathy, V. Pendrick, E. Belohoubek, A. Findikoglu, A. Inam, X. X. Xi, T. Venkatesan, and J. B. Barner,Appl. Phys. Lett. 58, 537 (1991).Google Scholar
  173. 173.
    M. S. Schmidt, R. J. Forse, R. B. Hammond, M. M. Eddy, and W. L. Olson,IEEE Trans. Microwave Theory Tech. 39, 1475 (1991).Google Scholar
  174. 174.
    S. J. Hedges, R. G. Humphreys, N. G. Chew, and S. W. Goodyear,Electron. Lett. 27, 2312 (1991).Google Scholar
  175. 175.
    F. Suginosita, K. Imai, N. Yazawa, K. Suzuki, S. Fujino, T. Takenaka, and K. Nakao,Electron. Lett. 28, 355 (1992).Google Scholar
  176. 176.
    A. Enokihara, K. Setsune, K. Wasa, M. Sagawa, and M. Makimoto,Electron. Lett. 28, 1925 (1992).Google Scholar
  177. 177.
    R. R. Bonetti and A. E. Williams, in 1990 IEEE International Microwave Symposium Digest (IEEE, New York, 1990), Vol. 1, pp. 273–276.Google Scholar
  178. 178.
    W. G. Lyons, R. S. Withers, J. M. Hamm, A. C. Anderson, D. E. Oates, P. M. Mankiewich, M. L. O'Malley, R. R. Bonetti, A. E. Williams, and N. Newman, inSuperconductivity and Its Applications (American Institute of Physics, New York, 1992), Vol. 251, pp. 639–658.Google Scholar
  179. 179.
    W. G. Lyons, R. S. Withers, J. M. Hamm, R. H. Mathews, B. J. Clifton, P. M. Mankiewich, M. L. O'Malley, and N. Newman, in Proceedings of the Picosecond Electronics and Optoelectronics Conference (Optical Society of America, Washington, D.C., 1991), Vol. 9, pp. 167–173. The 7-ns YBCO microstrip delay line was originally reported in W. G. Lyons, R. S. Withers, A. C. Anderson, R. R. Bonetti, A. E. Williams, P. M. Mankiewich, M. L. O'Malley, and R. E. Howard, presented at the 1990 IEEE Device Research Conference, Santa Barbara, California, June 1990.Google Scholar
  180. 180.
    S. A. Reible, in Proceedings of the 1982 IEEE Ultrasonics Symposium (IEEE, New York, 1982), pp. 190–201; R. S. Withers and R. W. Ralston,Proc. IEEE 77, 1247 (1989); W. G. Lyons and R. S. Withers, inSuperconducting Technology: 10 Case Studies, K. Fossheim, ed. (World Scientific, Singapore, 1991), pp. 113–135; and references therein.Google Scholar
  181. 181.
    R. S. Withers, in Proceedings of the 1988 IEEE Ultrasonics Symposium (IEEE, New York, 1988), pp. 185–194.Google Scholar
  182. 182.
    J. L. Lynch, R. S. Withers, A. C. Anderson, P. V. Wright, and S. A. Reible,Appl. Phys. Lett. 43, 319 (1983).Google Scholar
  183. 183.
    M. S. DiIorio, R. S. Withers, and A. C. Anderson,IEEE Trans. Microwave Theory Tech. 37, 706 (1989).Google Scholar
  184. 184.
    R. Ramisch, G. Olbrich, and P. Russer,IEEE Trans. Microwave Theory Tech. 39, 1575 (1991); F. Huang,Electron. Lett. 28, 1062 (1992).Google Scholar
  185. 185.
    L. A. Hornak, M. Hatamian, S. K. Tewksbury, E. G. Burkhardt, R. E. Howard, P. M. Mankiewich, B. L. Straughn, and C. D. Brandle, in 1989 IEEE International Microwave Symposium Digest (IEEE, New York, 1989), Vol. 2, pp. 623–626.Google Scholar
  186. 186.
    E. K. Track, G. K. G. Hohenwarter, L. R. Madhavrao, R. Patt, R. E. Drake, and M. Radparvar,IEEE Trans. Magn. 27, 2936 (1991).Google Scholar
  187. 187.
    W. Chew, A. L. Riley, D. L. Rascoe, B. D. Hunt, M. C. Foote, T. W. Cooley, and L. J. Bajuk,IEEE Trans. Microwave Theory Tech. 39, 1455 (1991).Google Scholar
  188. 188.
    W. G. Lyons, D. R. Arsenault, M. M. Seaver, R. R. Boisvert, T. C. L. G. Sollner, and R. S. Withers,IEEE Trans. Appl. Supercond. 3, 2891 (1993).Google Scholar
  189. 189.
    G.-C. Liang, R. S. Withers, B. F. Cole, S. M. Garrison, M. E. Johansson, W. Ruby, and W. G. Lyons, to be published inIEEE Trans. Appl. Supercond. 3, (1993).Google Scholar
  190. 190.
    For reviews on the applications of superconducting antennas, see R. J. Dinger,J. Supercond. 3, 287 (1990); R. C. Hansen,IEEE Trans. Aerosp. Electron. Syst. 26, 345 (1990).Google Scholar
  191. 191.
    R. J. Dinger, D. R. Bowling, and A. M. Martin,IEEE Trans. Microwave Theory Tech. 39, 1498 (1991).Google Scholar
  192. 192.
    W. G. Lyons and R. S. Withers,Microwave J. 33(11), 85 (1990).Google Scholar
  193. 193.
    J. S. Herd, J. P. Kenney, K. G. Herd, W. G. Lyons, A. C. Anderson, P. M. Mankiewich, and M. L. O'Malley, in 1992 IEEE Antennas and Propagation Society International Symposium Digest (IEEE, New York, 1992), Vol. 2, pp. 974–977; J. S. Herd, D. Hayes, J. P. Kenney, L. D. Poles, K. G. Herd, and W. G. Lyons,IEEE Trans. Appl. Supercond. 3, 2840 (1993).Google Scholar
  194. 194.
    L. L. Lewis, G. Koepf, K. B. Bhasin, and M. A. Richard,IEEE Trans. Appl. Supercond. 3, 2844 (1993).Google Scholar
  195. 195.
    H. Chaloupka,J. Supercond. 5, 403 (1992); H. Chaloupka, N. Klein, M. Peiniger, H. Piel, A. Pischke, and G. Splitt,IEEE Trans. Microwave Theory Tech. 39, 1513 (1991).Google Scholar
  196. 196.
    R. F. Pease and O.-K. Kwon,IBM J. Res. Dev. 32, 636 (1988); and references therein.Google Scholar
  197. 197.
    H. Kroger, C. Hubert, D. A. Gibson, U. Ghoshal, and L. N. Smith,Proc. IEEE 77, 1287 (1989).Google Scholar
  198. 198.
    R. C. Eden, private communication.Google Scholar
  199. 199.
    M. J. Burns, K. Char, B. F. Cole, W. S. Ruby, and S. A. Sachtjen,Appl. Phys. Lett. 62, 1435 (1993); R. B. Hammond and L. C. Bourne, in Proceedings of the 1991 Los Alamos Symposium on Phenomenology and Applications of High-Temperature Superconductors (Addison-Wesley, Reading, Massachusetts, 1992), pp. 437–462.Google Scholar
  200. 200.
    F. D. Bedard, private communication; N. Potter, S. Belyo, M. Bertram, D. Gibson, L. Gilg, W. Parmon, R. Simmons, and R. Miracky (unpublished).Google Scholar
  201. 201.
    J. S. Martens, V. M. Hietala, T. E. Zipperian, D. S. Ginley, C. P. Tigges, and G. K. G. Hohenwarter,IEEE Microwave Guided Wave Lett. 1, 291 (1991); J. B. Green, M. Bhushan, and R. S. Withers (unpublished).Google Scholar
  202. 202.
    J. S. Martens, V. M. Hietala, T. E. Zipperian, D. S. Ginley, C. P. Tigges, and J. M. Phillips,IEEE Trans. Microwave Theory Tech. 39, 2018 (1991); J. S. Martens, D. S. Ginley, J. B. Beyer, J. E. Nordman, and G. K. G. Hohenwarter,IEEE Trans. Appl. Supercond. 1, 95 (1991).Google Scholar
  203. 203.
    J. S. Satchell, J. A. Edwards, N. G. Chew, and R. G. Humphreys,Electron. Lett. 28, 781 (1992).Google Scholar
  204. 204.
    J. S. Martens,IEEE Trans. Appl. Supercond. 3, 2295 (1993).Google Scholar
  205. 205.
    J. H. Takemoto-Kobayashi, C. M. Jackson, C. J. Pettiette-Hall, and J. F. Burch,IEEE Trans. Appl. Supercond. 2, 39 (1992); D. J. Durand, J. Carpenter, E. Ladizinsky, L. Lee, C. M. Jackson, A Silver, and A. D. Smith,IEEE Trans. Appl. Supercond. 2, 33 (1992).Google Scholar
  206. 206.
    J. S. Martens, J. R. Wendt, V. M. Hietala, D. S. Ginley, C. I. H. Ashby, T. A. Plut, G. A. Vawter, C. P. Tigges, M. P. Siegal, S. Y. Hou, J. M. Phillips, and G. K. G. Hohenwarter,J. Appl. Phys. 72, 5970 (1992).Google Scholar
  207. 207.
    C. M. Jackson, J. H. Kobayashi, A. Lee, C. P. Pettiette-Hall, J. F. Burch, R. Hu, R. Hilton, and J. McDade,Microwave Opt. Technol. Lett. 5, 722 (1992).Google Scholar
  208. 208.
    J. P. Hong, T. W. Kim, H. R. Fetterman, A. H. Cardona, and L. C. Bourne,Appl. Phys. Lett. 59, 991 (1991).Google Scholar
  209. 209.
    Y. Fukumoto, H. Kajikawa, R. Ogawa, and Y. Kawate, inAdvances in Superconductivity IV, H. Hayakawa and N. Koshizuka, eds. (Springer-Verlag, Tokyo, 1992), pp. 973–976.Google Scholar
  210. 210.
    D. P. Butler, W. Yang, J. Wang, A. Bhandari, and Z. CelikButler,Appl. Phys. Lett. 61, 333 (1992).Google Scholar
  211. 211.
    J. Edstam, P.-A. Nilsson, E. A. Stepantsov, and H. K. Olsson,Appl. Phys. Lett. 62, 896 (1993).Google Scholar
  212. 212.
    E. Denlinger, R. Paglione, D. Kalokitis, E. Belohoubek, A. Pique, X. D. Wu, T. Venkatesan, A. Fathy, V. Pendrick, S. Green, and S. Mathews,IEEE Microwave Guided Wave Lett. 2, 449 (1992).Google Scholar
  213. 213.
    T. Van Duzer,Cryogenics 28, 527 (1988).Google Scholar
  214. 214.
    M. A. Delaney, R. S. Withers, A. C. Anderson, J. B. Green, and R. W. Mountain,IEEE Trans. Magn. MAG-23, 791 (1987).Google Scholar
  215. 215.
    For example, see K. B. Bhasin, S. S. Toncich, C. M. Chorey, R. R. Bonetti, and A. E. Williams, in 1992 IEEE International Microwave Symposium Digest (IEEE, New York, 1992), Vol. 1, pp. 481–483.Google Scholar
  216. 216.
    For information on the operation of conventional semi-conductor electronics at cryogenic temperatures, see the collection of works inLow-Temperature Electronics, R. K. Kirschman, ed. (IEEE, New York, 1986); special issues on low-temperature semiconductor electronics inIEEE Trans. Electron Dev. ED-34, 1 (1987) and36, 1401 (1989); and Proceedings of the Symposium on Low-Temperature Electronics and High-Temperature Superconductors (Electro-chemical Society, Pennington, New Jersey, 1988), Vol. 88–9.Google Scholar
  217. 217.
    For example, see M. W. Pospieszalski, S. Weinreb, R. D. Norrod, and R. Harris,IEEE Trans. Microwave Theory Tech. 36, 552 (1988); S. Weinreb, D. L. Fenstermacher, and R. W. Harris,IEEE Trans. Microwave Theory Tech. MTT-30, 849 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Nathan Newman
    • 1
  • W. Gregory Lyons
    • 2
  1. 1.Department of Material Science and Lawrence-Berkeley LaboratoryUniversity of CaliforniaBerkeley
  2. 2.Lincoln LaboratoryMassachusetts Institute of TechnologyLexington

Personalised recommendations