Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A computational analysis of some diaryl ureas in relation to their observed crystalline hydrogen bonding patterns

  • 41 Accesses

  • 11 Citations

Abstract

We have carried out anab initio self-consistent-field molecular orbital analysis of the structures, atomic charges and electrostatic potentials of 1,3-bisphenylurea, 1,3-bis(m-nitrophenyl)urea and 1,3-bis(p-nitrophenyl)urea. Our results provide insight into the contrasting hydrogen bond patterns and preferences of these molecules in crystalline environments. The tendency for 1,3-bisphenylurea to form homomeric rather than heteromeric (i.e. host-guest) crystals is attributed to a relatively strong and extended homomeric attractive electrostatic interaction between two like molecules. Our calculated internuclear distances and atomic charges indicate that these molecules have some degree of H...O intramolecular hydrogen bonding between the carbonyl oxygen and the nearest aromatic hydrogens when the aromatic and the urea portions of the molecules are coplanar. This interaction is strongest for the meta nitro derivative, consistent with the latter remaining very nearly planar in its cocrystal structures. Our surface electrostatic potentials for the three diaryl ureas are used to interpret their differing crystallization properties and tendencies to form cocrystals with guest molecules.

This is a preview of subscription content, log in to check access.

Refernces

  1. 1.

    C. J. Van Stavern, D. E. Fenton, D. N. Reinhoudt, J. Van Erden, and S. Harkema:J. Chem. Soc. Chem. Commun. 368 (1981).

  2. 2.

    J. L. Atwood, J. E. D. Davies, and D. D. MacNicol:Inclusion Compounds, Academic Press (1984), Chapter 9.

  3. 3.

    M. C. Etter, Z. Urbanczyk-Lipkowska, D. A. Jahn, and J. Frye:J. Am. Chem. Soc. 108, 5871 (1986).

  4. 4.

    A. D. Hamilton and D.Van Engen:J. Am. Chem. Soc. 109, 5035, (1987).

  5. 5.

    J. Rebek Jr., B. Askew, M. Killoran, D. Nemeth, and F.-T. Lin:J. Am. Chem. Soc. 109, 2426 (1987).

  6. 6.

    T. W. Bell and J. Liu:J. Am. Chem. Soc. 110, 3673 (1988).

  7. 7.

    J. Rebek Jr., B. Askew, P. Ballester, and A. Costero:J. Am. Chem. Soc. 110, 923 (1988).

  8. 8.

    M. C. Etter:Acc. Chem. Res. 23, 120 (1990).

  9. 9.

    R. Stadler:Prog. Colloid Polym. Sci. 75, 140 (1987).

  10. 10.

    M. C. Etter and G. M. Frankenbach:Chem. Mat. 1, 10 (1989).

  11. 11.

    C. T. Seto and G. M. Whitesides:J. Am. Chem. Soc. 112, 6409 (1990).

  12. 12.

    X. Zhao, Y.-L. Chang, F. W. Fowler, and J. W. Lauher:J. Am. Chem. Soc., 1990, in press.

  13. 13.

    M. C. Etter, K. S. Huang, G. M. Frankenbach, and D. A. Adsmond:ACS Symposia Series, in press.

  14. 14.

    Y. Ducharme and J. D. Wuest:J. Org. Chem. 53, 5789 (1988).

  15. 15.

    S. K. Chang and A. D. Hamilton:J. Am. Chem. Soc. 110, 1318 (1988).

  16. 16.

    B. Askew, P. Ballester, C. Buhr, K. S. Jeong, S. Jones, K. Parris, K. Williams, and J. Rebek Jr.:J. Am. Chem. Soc. 111, 1082 (1989).

  17. 17.

    M. C. Etter and T. W. Panunto:J. Am. Chem. Soc. 110, 5896 (1988).

  18. 18.

    M. C. Etter, Z. Urbanczyk-Lipkowska, M. Zia-Ebrahimi, and T. W. Panunto:J. Am. Chem. Soc. 112, 8415 (1990).

  19. 19.

    F. H. Allen, S. Bellard, M. D. Brice, B. A. Cartwright, A. Doubleday, H. Higgs, T. Hummellink, B. G. Hummelink-Peters, O. Kennard, W. D. S. Motherwell, J. R. Rodgers, and D. G. Watson:Acta Crystallogr. B35, 2331 (1979).

  20. 20.

    W. Dannecker, J. Kopf, and H. Rust:Cryst. Struct. Commun.,8, 429 (1979).

  21. 21.

    P. Groth:An Introduction to Chemical Crystallography, Wiley, New York, (1906) pp. 29–30.

  22. 22.

    M. C. Etter and K.-S. Huang: private communication.

  23. 23.

    M. J. Kamlet, J.-L. M. Abboud, M. H. Abraham, and R. W. Taft:J. Org. Chem. 48, 2877 (1983).

  24. 24.

    R. Taylor and O. Kennard:J. Am. Chem. Soc.,104, 5063 (1982).

  25. 25.

    GAUSSIAN 88: M. J. Frisch, M. Head-Gordon, H. B. Schlegel, K. Raghavachari, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, R. Martin, L. R. Kahn, J. J. P. Stewart, E. M. Fluder, S. Topiol, and J. A. Pople: GAUSSIAN 88, Gaussian Inc., Pittsburgh, PA, 1988.

  26. 26.

    R. S. Mulliken:J. Chem. Phys. 23, 1833 (1955).

  27. 27.

    W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople:Ab Initio Molecular Orbital Theory, Wiley-Interscience, New York, 1986.

  28. 28.

    E. Scrocco and J. Tomasi:Adv. Quantum Chem. 11, 115 (1978).

  29. 29.

    P. Politzer and K. C. Daiker: in D. M. Deb, ed.,The Force Concept in Chemistry, Van Nostrand Reinhold, New York (1981) 294.

  30. 30.

    P. Politzer and D. G. Truhlar, eds.:Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, New York, 1981.

  31. 31.

    P. Politzer, P. R. Laurence, and K. Jayasuriya: in J. McKinney, ed.,Structure-Activity Correlation in Mechanism Studies and Predictive Toxicology, Special Issue of Environmental Health Perspectives, Vol. 61, 191 (1985).

  32. 32.

    P. Politzer and J. S. Murray: in D. L. Beveridge and R. Lavery, eds.,Theoretical Biochemistry and Molecular Biophysics: A Comprehensive Survey, Adenine Press, Schenectady, NY, in press.

  33. 33.

    P. Politzer and J. S. Murray:Trans. Amer. Cryst. Assoc., in press.

  34. 34.

    P. Kollman, J. McKelvey, A. Johansson, and S. Rothenberg:J. Am. Chem. Soc. 97, 955 (1975).

  35. 35.

    J. S. Murray, S. Ranganathan, and P. Politzer,J. Org. Chem., submitted.

  36. 36.

    The original programs for computing and plotting properties on molecular surfaces were written by Dr. Per Sjoberg and Mr. Tore Brinck.

  37. 37.

    P. Sjoberg, J. S. Murray, T. Brinck, P. Evans, and P. Politzer:J. Mol. Graphics 8, 81 (1990).

  38. 38.

    P. Sjoberg and P. Politzer:J. Phys. Chem. 94, 3959 (1990).

  39. 39.

    J. S. Murray, P. Lane, T. Brinck, P. Politzer, and P. Sjoberg:J. Phys. Chem., in press.

  40. 40.

    F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, and A. G. Orpen:J. Chem. Soc. Perkin Trans. II, S1 (1987).

  41. 41.

    P. Politzer, L. Abrahmsen, and P. Sjoberg:J. Amer. Chem. Soc. 106, 855 (1984).

  42. 42.

    J. S. Murray and P. Politzer:J. Mol. Struc. (THEOCHEM) 163, 111 (1988).

  43. 43.

    J. S. Murray, J. M. Seminario, and P. Politzer:J. Mol. Struct. (THEOCHEM) 187, 95 (1989).

  44. 44.

    J. S. Marray, P. Lane, and P. Politzer:J. Mol. Struct. (THEOCHEM) 209, 163 (1990).

  45. 45.

    J. E.Del Bene:J. Am. Chem. Soc. 95, 5460 (1973).

  46. 46.

    P. George, C. W. Bock, and M. Trachtman:J. Mol. Struct. (THEOCHEM) 92, 109 (1983).

  47. 47.

    J. S. Murray and P. Politzer:Chem. Phys. Letters,136, 283 (1987).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Murray, J.S., Grice, M.E., Politzer, P. et al. A computational analysis of some diaryl ureas in relation to their observed crystalline hydrogen bonding patterns. Mol Eng 1, 75–87 (1991). https://doi.org/10.1007/BF00625739

Download citation

Key words

  • Diaryl ureas
  • electrostatic potentials
  • hydrogen bond patterns
  • cocrystal selectivity