Advertisement

Acta Informatica

, Volume 18, Issue 1, pp 109–115 | Cite as

On the Hotz group of a context-free grammar

  • Christiane Frougny
  • Jacques Sakarovitch
  • Erich Valkema
Article

Summary

This note gives a new and algebraic construction of the Hotz group of a context-free grammar. The main result, that the Hotz group is defined by the generated language, as well as the relationships between this group and the syntactic monoid of the language are then easy consequences of this presentation.

Keywords

Information System Operating System Data Structure Communication Network Information Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anisimov, A.V., Seifert, F.D.: Zur algebraischen Charakteristik der durch kontextfreie Sprachen definierten Gruppen. Elektronische Informationsverarbeitung und Kybernetik11, 695–702 (1975)Google Scholar
  2. 2.
    Boasson, L.: Dérivations et réductions dans les grammaires algébriques. In: Proc. of the 7th I.C.A.L.P., Lecture Notes in Computer Science85, 109–118 (1980)Google Scholar
  3. 3.
    Clifford, A., Preston, G.: The algebraic theory of semigroups. Amer. Math. Soc., Vol.1 (1961), Vol.2 (1967)Google Scholar
  4. 4.
    Frougny, Ch.: Simple deterministic NTS languages. Information Processing Letters12 (4), 174–178 (1981)Google Scholar
  5. 5.
    Harrison, M.: Introduction to Formal Language Theory. Addison Wesley 1978Google Scholar
  6. 6.
    Hotz, G.: Eine neue Invariante für kontexfreie Sprachen. Theoret. Computer Sci.11, 107–116 (1980)Google Scholar
  7. 7.
    Hotz, G.: Über die Darstellbarkeit des syntaktischen Monoides kontextfreier Sprachen. R.A.I.R.O. Informatique théorique13, 337–345 (1979)Google Scholar
  8. 8.
    Lang, S.: Algebra. Addison Wesley 1965Google Scholar
  9. 9.
    Muller, D.E., Schupp, P.E.: Pushdown automata, graphs, ends, second-order logic, and reachability problems. In: Proc. of the 13th symposium on Theory of Computing, 46–54 (1981)Google Scholar
  10. 10.
    Sakarovitch, J.: Syntaxe des langages de Chomsky. Th. Sci. Math., Univ. Paris VII, Paris 1979Google Scholar
  11. 11.
    Senizergues, G.: Décidabilité de l'équivalence des grammaires N.T.S. Thèse 3ème cycle Math., Univ. Paris VII, Paris 1981Google Scholar
  12. 12.
    Valkema, E.: Einige Zusammenhänge zwischen Halbgruppen und formale Sprachen. Diplomarbeit, Kiel 1970Google Scholar
  13. 13.
    Valkema, E.: On some relations between formal languages and groups. In: Proc. of “Categorical and Algebraic Methods in Computer Science and System Theory”, Univ. Dortmund, 116–123 (1978)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Christiane Frougny
    • 1
  • Jacques Sakarovitch
    • 2
  • Erich Valkema
    • 3
  1. 1.U.E.R. de MathématiquesUniversité de Picardie et L.I.T.P.ParisFrance
  2. 2.L.I.T.P, C.N.R.SParisFrance
  3. 3.Institut für Informatik und Praktische Mathematik der Universität KielFrance

Personalised recommendations