Advertisement

Optical and Quantum Electronics

, Volume 11, Issue 1, pp 43–59 | Cite as

Curvature and microbending losses in single-mode optical fibres

  • W. A. Gambling
  • H. Matsumura
  • C. M. Ragdale
Papers

Abstract

Curvature of a single-mode optical fibre gives rise to two principal forms of additional transmission loss, namely transition loss and pure bend loss. The transition loss and the associated ray radiation, which have been observed at the beginning of a bend, can be satisfactorily explained by a modified coupled-mode theory. The radiation modes are represented by a quasi-guided mode having an average propagation constantβe. The introduction of a gradual change of curvature reduces the transition loss much more than the pure bend loss. Analysis of the microbending loss shows that the transition component is a maximum at a given correlation length which can be simply expressed in terms ofβe. The contributions of both transition and bend components to the total microbend loss have been derived for the case of a randomly-curved fibre for several autocorrelation and density functions.

Keywords

Radiation Density Function Autocorrelation Communication Network Correlation Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Lewin,IEEE Trans. Microwave Theory Tech. MTT-22 (1974) 121–29.Google Scholar
  2. 2.
    A. W. Snyder, I. White andD. J. Mitchell,Electron. Lett. 11 (1975) 332–33.Google Scholar
  3. 3.
    D. Marcuse,J. Opt. Soc. Amer. 66 (1976) 311–20.Google Scholar
  4. 4.
    M. Miyagi andG. L. Yip,Opt. Quant. Elect. 9 (1975) 51–60.Google Scholar
  5. 5.
    W. A. Gambling andH. Matsumura,Trans. Inst. Electron. Commn. Engrs. Japan E61 (1978) 196–201.Google Scholar
  6. 6.
    W. A. Gambling, H. Matsumura andR. A. Sammut,Electron. Lett. 13 (1977) 695–97.Google Scholar
  7. 7.
    W. A. Gambling, H. Matsumura andC. M. Ragdale,ibid 14 (1978) 130–32.Google Scholar
  8. 8.
    W. A. Gambling, H. Matsumura, C. M. Ragdale andR. A. Sammut,Microwaves, Opt. Acoust. 3 (1978) 134–40.Google Scholar
  9. 9.
    D. Marcuse,Bell Syst. Tech. J. 55 (1976) 937–55.Google Scholar
  10. 10.
    K. Petermann,Opt. Quant. Elect. 9 (1977) 167–75.Google Scholar
  11. 11.
    W. A. Gambling, D. N. Payne andH. Matsumura,Electron. Lett. 12 (1976) 567–69.Google Scholar
  12. 12.
    R. A. Sammut,ibid 13 (1977) 418–19.Google Scholar
  13. 13.
    C. G. Someda,ibid 13 (1977) 712–13.Google Scholar
  14. 14.
    D. Marcuse, ‘Theory of Dielectric Optical Waveguides’ (Academic Press, New York, 1974).Google Scholar
  15. 15.
    W. A. Gambling, D. N. Payne andH. Matsumura,Proceedings of AGARD Conference on Electromagnetic Wave Propagation involving Irregular Surfaces and Inhomogeneous Media, The Hague (March 1974) 12.1–12.16.Google Scholar
  16. 16.
    H. F. Taylor,Appl. Opt. 13 (1974) 642–47.Google Scholar
  17. 17.
    E. A. J. Marcatili andS. E. Miller,Bell Syst. Tech. J. 48 (1969) 2161–2187.Google Scholar
  18. 18.
    W. A. Gambling andH. Matsumura,Electron. Lett. 13 (1977) 691–93.Google Scholar
  19. 19.
    D. Marcuse, ‘Light Transmission Optics’ (Van Nostrand Reinhold Co, New York, 1972).Google Scholar
  20. 20.
    R. Olshansky,Appl. Opt. 14 (1975) 925–45.Google Scholar

Copyright information

© Chapman and Hall Ltd 1979

Authors and Affiliations

  • W. A. Gambling
    • 1
  • H. Matsumura
    • 1
  • C. M. Ragdale
    • 1
  1. 1.Department of ElectronicsUniversity of SouthamptonSouthamptonUK

Personalised recommendations