, Volume 63, Issue 2, pp 68–80 | Cite as

Model consideration for the origin of life

Environmental structure as stimulus for the evolution of chemical systems
  • Hans Kuhn


In an attempt to understand the origin of living systems we encounter the following problems: How can we conceive the origin of the first self-reproducing forms, and by means of what stimuli could a constant increase in the complexity of such forms commence? How can a translation apparatus for genetic information develop? One cannot that such an apparatus for the synthesis of enzymes can function alone without the interference of enzymes themselves, which, however, could only become available after the construction of the apparatus itself. What stimulus mechanism is conceivable that leads to the division of the genetic apparatus into a replication system, and an enzyme-synthesis system?

The main problem therefore, is not the search for basic theoretical concepts. It is not a question which can be answered by means of specific experiments. One should rather explore the principal possibilities of how molecules combine to produce more and more complicated functional units. We look for the fundamental structural changes in the organizational systems and the driving forces initiating these developments. Questions concerning the detailed chemical realization are of secondary importance. In trying to solve the puzzle of how the genetic apparatus is gradually built up as complex aggregates of molecules, we consider a consistent causal chain of simple and transparent physicochemical model steps.

The driving force for the self-organization of matter is seen in a specific environmental structure to be found on the surface of the earth. By this structure, which is periodic in time and heterogeneous in space, evolution is initiated and driven towards a continuously increasing degree of complexity correlated with a continuous expansion of the accessible living space. This process is a necessity under proper environmental conditions. Accidental events initiate each step but do not determine the general course of evolution which is determined by the selection mechanism.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prigogine, I., Glansdorff, D.: Thermodynamic Theory of Structure, Stability and Fluctuations. London: Wiley Interscience 1971; Prigogine, I., Nicolis, G.: Quart. Rev. Biophys.4, 107 (1971)Google Scholar
  2. 2.
    Eigen, M.: Naturwissenschaften58, 465 (1971); Quart. Rev. Biophys.4, 149 (1971); Nova Acta Leopoldina37, 171 (1972); Eigen, M. Winkler, R.: Mannheimer Forum 73/74, p. 5Google Scholar
  3. 3.
    Katchalsky, A.: Neurosci. Res. Prog. Bull.9, 397 (1972)Google Scholar
  4. 4.
    Kuhn, H.: Angew. Chem., Internat. Ed.11, 798 (1972).Google Scholar
  5. 5.
    Kuhn, H.: Nova Acta Leopoldina42, 149 (1975)Google Scholar
  6. 6.
    Kuhn, H., in: Biophysik — Ein Lehrbuch (ed. W. Lohmann and W. Hoppe). Heidelberg: Springer (in print)Google Scholar
  7. 7.
    Calvin, M.: Chemical Evolution. Oxford: Clarendon Press 1969; Angew. Chem.86, 111 (1974)Google Scholar
  8. 8.
    Rutten, M. G.: The Origin of Life. Amsterdam-London-New York Elsevier 1971Google Scholar
  9. 9.
    Oparin, A. I.: Genesis and Evolutionary Development of Life. New York: Academic Press 1968Google Scholar
  10. 10.
    Haldane, J. B. S.: Origin of Life. New Biology No. 16. London: Penguin 1954Google Scholar
  11. 11.
    Dose, K., Rauchfuss, H.: Chemische Evolution und der Ursprung lebender Systeme. Stuttgart: Wissenschaftl. Verlagsgesellschaft 1975Google Scholar
  12. 12.
    Unsöld, A.: Der neue Kosmos. Berlin-Heidelberg-New York: Springer 1974; Boschke, F.L.: Das Unerforschte. Düsseldorf-Wien: Econ 1975Google Scholar
  13. 13.
    Landauer, R., Woo, J. W.: J. Appl. Phys.42 2301 (1971); Synergetics, p. 97 (ed. H. Haken). Stuttgart: Teubner 1973Google Scholar
  14. 14.
    Harbers, E.: Nucleinsäuren. Stuttgart: Thieme 1969Google Scholar
  15. 15.
    Kim, S. H., et al.: Science179, 285 (1973)Google Scholar
  16. 16.
    Kearns D. R., Shulman, R. G.: Accounts Chem. Res.7, 33 (1974)Google Scholar
  17. 17.
    Paecht-Horowitz, M., Berger, J., Katchalsky, A.: Nature228, 636 (1970)Google Scholar
  18. 17a.
    Paecht-Horowitz, M.: Angew. Chem.85, 422 (1973)Google Scholar
  19. 18.
    Fox, S. W.: Naturwissenschaften56, 1 (1969);60, 359 (1973)Google Scholar
  20. 19.
    Orgel, L., Lohrmann, R.: Accounts Chem. Res.7, 368 (1974)Google Scholar
  21. 20.
    Watson, J. D.: Molecular Biology of the Gene. New York: Benjamin 1970Google Scholar
  22. 21.
    King, J. L., Jukes, T. H.: Science164, 788 (1969)Google Scholar
  23. 22.
    Weizsäcker, C. F. v., Weizsäcker, E. v., Weizsäcker, C. v.: Nova Acta Leopoldina37, 515 (1972)Google Scholar
  24. 23.
    Kuhn, T. S.: Die Struktur wissenschaftlicher Revolutionen. Frankfurt: Suhrkamp 1967; Stegmüller, W.: Hauptströmungen der Gegewarts-Philosophie, Band II. Stuttgart: Kröner 1975Google Scholar
  25. 24.
    Monod, J.: Zufall und Notwendigkeit. München: Piper 1971Google Scholar
  26. 25.
    Kuhn, H., Möbius, D.: Angew. Chem. Internat. Ed.10, 620 (1971); Kuhn, H., Möbius, D., Bücher, H. in: Physical Methods of Chemistry, Vol. I, Pt. 3B (ed. A. Weissberger and B. Rossiter). New York: Wiley 1972Google Scholar
  27. 26.
    Sumper, M., Luze, R.: Proc. Natl. Acad. Sci. USA72, 162 (1975); Küppers, B., Sumper, M.: ibid,72, 2630 (1975)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Hans Kuhn
    • 1
  1. 1.Max-Planck-Institut für Biophysikalische ChemieGöttingen

Personalised recommendations