Advertisement

Journal of Superconductivity

, Volume 4, Issue 3, pp 233–242 | Cite as

On the oxygen deficiency of high-Tc Y1Ba2Cu3O7-µ ceramics

  • A. Szasz
  • Z. Dankhazi
  • J. Kojnok
  • T. Trager
  • J. Matrai
  • I. Gyorgy
  • H. Kirchmayr
  • H. Müller
  • L. M. Watson
Articles

Abstract

The role of oxygen deficiency in Y1Ba2Cu3O7 − μ ceramics has been investigated by differential thermal analysis (DTA), differential thermogravimetry (DTG), linear thermal expansion (LTE), and by soft x-ray fluorescence spectroscopy (SXFS). The interdependence of the measured parameters and some of the stability criteria are discussed.

Key words

Y1Ba2Cu3O7 Superconductors, Oxygen deficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Peterson,Z. Phys. 24, 274 (1977).Google Scholar
  2. 2.
    W. H. Butler, Electronic Structure and Properties,Treatise on Material Science and Technology, F. Y. Fadin, ed. (Academic Press, New York, 1981), Vol. 21, p. 211.Google Scholar
  3. 3.
    J. C. Phillips,The Physics of High-Temperature Superconductivity (Academic Press, New York, 1989).Google Scholar
  4. 4.
    J. Konstantinovic, Z. Djordjevic, G. Parettand, and A. Menelle,Solid State Commun. 70, 159 (1989).Google Scholar
  5. 5.
    J. Konstantinovic, G. Parette, Z. Djordjevic, and A. Menelle,Solid State Commun. 70, 163 (1989).Google Scholar
  6. 6.
    J. Kojnok, Z. Dankhazi, and A. Szasz,Kem. Kozl. 68, 51 (1987).Google Scholar
  7. 7.
    A. Szasz, W. Krasser, J. Hajdu, J. Kojnok, and T. Trager,Physica C 162–164, 973 (1989).Google Scholar
  8. 8.
    A. Bharathi, Y. Hariharan, A. K. Sood, V. Sankara-Sastry, M. P. Zanawadkar, and C. S. Sundar,Physica C 153, 111 (1988).Google Scholar
  9. 9.
    E. Pollert, J. Hejtmanek, K. Jurek, A. Triska, P. Vasek, and D. Zemanova,Physica C 153–155, 375 (1988).Google Scholar
  10. 10.
    Z. Dankhazi, A. Szasz, J. Kojnok, H. Kircmayr, H. Muller, L. M. Watson, M. Gal, K. Torkos, and K. Solymos,J. Supercond.,4, 219 (1991).Google Scholar
  11. 11.
    A. Szasz, J. Hajdu, J. Kojnok, Z. Dankhazi, W. Krasser, T. Trager, and J. Bankuti,J. Superconduct. 3, 425 (1990).Google Scholar
  12. 12.
    H. Bakker, J. P. A. Westerveld, and D. O. Welch,Physica C 153–155, 828 (1988).Google Scholar
  13. 13.
    R. J. Cava, B. Battlog, S. A. Sunshine, T. Siegrist, R. M. Fleming, K. Rabe, L. F. Schneemeyer, D. W. Murphy, R. B. van Dover, P. K. Gallaher, S. H. Glarum, S. Nakahara, R. C. Farrow, J. J. Krajewski, S. M. Zahurak, J. V. Waszczak, J. H. Marshall, P. Marsh, L. W. Rupp, Jr., K. F. Peck, and E. A. Rietmen,Physica C 153–155, 560 (1988).Google Scholar
  14. 14.
    Bing-Liu Gu, Qiang Wang, and Xiao-Wen Zhang,Physica C 153–155, 251 (1988).Google Scholar
  15. 15.
    P. Steiner, S. Hufner, V. Kissinger, I. Sander, B. Siegwart, H. Schmitt, R. Schultz, S. Junk, G. Schwitzgebel, A. Gold, C. Politis, H. P. Muller, R. Hoppe, S. Kemmler-Sack, and C. Kunz,Z. Phys. B 69, 449 (1988).Google Scholar
  16. 16.
    L. Pauling,Phys. Rev. Lett. 59, 225 (1987).Google Scholar
  17. 17.
    N. Karpe and K. V. Rao,Physica C 153–155, 1353 (1988).Google Scholar
  18. 18.
    G. Sparn, W. Schiebeling, M. Lang, R. Held, U. Gottwick, F. Steglich, and H. Rietschel,Physica C 143–155, 1010 (1988).Google Scholar
  19. 19.
    K. Kadowski, F. E. Kayzel, and J. J. M. Franse,Physica C 153–155, 1028 (1988).Google Scholar
  20. 20.
    Zhang Yuheng, Chen Zhaojia, Ruan Yaozhong, Wang Jun, Mao Xianglei, Yang Hongshun, Li Lipung, Chen Lin, Cheng Thingzhu, Meng Guangyao, Peng Dingkun, and Hu Junbao,Physica C 153–155, 978 (1988).Google Scholar
  21. 21.
    M. Ospelt, J. Henz, E. Kaldis, and P. Wachter,Physica C 153–155, 159 (1988).Google Scholar
  22. 22.
    D. D. Sharma, K. Prabhakaran, and C. N. R. Rao,Physica C 153–155, 151 (1988).Google Scholar
  23. 23.
    R. Surianarayanan, O. Gorochov, M. Rateau, and H. Pankowska,Physica C 153–155, 874 (1988).Google Scholar
  24. 24.
    M. T. Beal-Mouod,J. Phys. 49, 103 (1988).Google Scholar
  25. 25.
    M. T. Beal-Mouod,J. Phys. 49, 295 (1988).Google Scholar
  26. 26.
    M. Cankurtaran, G. A. Saunders, D. P. Almond, A. AlKheffaji, J. Freestone, Q. Wang, and E. F. Lambson: inPhysics and Materials Science of High-Temperature Superconductors, R. Kossowsky, S. Methfessel, and D. Wohlleben, eds., NATO ASI Series (Kluwer Academic Publishers, Dordrecht-Boston, 1990), p. 627.Google Scholar
  27. 27.
    M. Melamud, L. H. Bennett, and R. E. Watson,Phys. Rev. B 38, 4624 (1989).Google Scholar
  28. 28.
    J. B. Torrence, Y. Tokura, A. Nazzal, and S. S. P. Parkin,Phys. Rev. Lett. 60, 542 (1988).Google Scholar
  29. 29.
    U. Geiser, M. A. Beno, A. J. Schultz, H. H. Wang, T. J. Allen, M. R. Monaghan, and J. M. Williams,Phys. Rev. B 35, 6721 (1987).Google Scholar
  30. 30.
    Q. W. Yan, P. L. Zhang, Z. G. Shen, J. K. Zhao, Y. Ren, Y. N. Wei, T. D. Mao, C. X. Liu, T. S. Ning, K. Sun, and Q. S. Yang,Phys. Rev. B 36, 8810 (1987).Google Scholar
  31. 31.
    G. Cannelli, R. Cantelli, F. Cordero, G. Costa, M. Ferretti, and G. L. Olcese,Physica C 153–155, 298 (1988).Google Scholar
  32. 32.
    U. Murek, K. Keulerz, and J. Rohler,Physica C 153–155, 270 (1988).Google Scholar
  33. 33.
    J. Toulouse, X. M. Wang, and D. J. L. Hong,Phys. Rev. B 38, 7077 (1988).Google Scholar
  34. 34.
    T. Laegreid, K. Fossheim, E. Sanvold, and S. Julsrud,Nature (London) 330, 637 (1987).Google Scholar
  35. 35.
    M. P. Staines, J. L. Tallon, W. H. Robinson, and N. E. Flower,Appl. Phys. Lett. 53, 1560 (1988).Google Scholar
  36. 36.
    M.-S. Zhang, C. Qiang, S. Dakun, J. Rong-fu, Q. Zgeng-hao, and Y. Zheng,Solid State Commun. 65, 487 (1988).Google Scholar
  37. 37.
    K. Kamigaki, H. Teranchi, T. Terashima, Y. Bando, K. Iijima, Y. Ymamoto, and K. Hirata,Physica C 159, 505 (1989).Google Scholar
  38. 38.
    H. Eschrig,Physica C 159, 545 (1989).Google Scholar
  39. 39.
    V. L. Aksenov and N. M. Plakida,Physica C 153–155, 194 (1988).Google Scholar
  40. 40.
    A. Szasz, “The Symmetries and High Critical Temperature Superconductivity,” inPhysics and Materials Science of High Critical Temperature Superconductors, R. Kossowsky, S. Methfessel, and D. Wohlleben, eds., NATO ASI Series, Ser. E.: Applied Sciences, Vol. 181 (Kluwer Academic Publishers, Dordrecht-Boston, 1990) p. 233.Google Scholar
  41. 41.
    A. Szasz, invited paper at 14th International School of Theoretical Physics, Silesian University, 15–24 September 1990, Sczyrk, Poland, to be published by World Scientific.Google Scholar
  42. 42.
    A. Szasz, Yu. Kopaev, and A. DasGupta,Phys. Lett. 152, 561 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. Szasz
    • 1
  • Z. Dankhazi
    • 1
  • J. Kojnok
    • 1
  • T. Trager
    • 2
  • J. Matrai
    • 2
  • I. Gyorgy
    • 2
  • H. Kirchmayr
    • 3
  • H. Müller
    • 3
  • L. M. Watson
    • 4
  1. 1.Laboratory of Surface and Interface PhysicsEotvos University6-8 BudapestHungary
  2. 2.Central Research and Design Institute for the Silicate IndustryBudapestHungary
  3. 3.Institute of Experimental PhysicsTechnical University, WienWienAustria
  4. 4.Department of MetallurgyUniversity of StrathclydeGlasgowUK

Personalised recommendations