Advertisement

Optical and Quantum Electronics

, Volume 8, Issue 3, pp 213–217 | Cite as

Nonlinear absorption measurements in proustite (Ag3AsS3) and CdSe

  • D. C. Hanna
  • A. J. Turner
Papers

Abstract

Nonlinear absorption has been observed in proustite at 694 nm; however at 1.06μm, in contrast to previous results, no nonlinear absorption could be detected at intensities up to the damage threshold. Measurements on CdSe at 1.06μm and 1.32μm show that the nonlinear absorption mechanism is two photon absorption followed by absorption by the photo-induced carriers. The implications of this for nonlinear mixing applications are discussed.

Keywords

Communication Network Absorption Measurement Damage Threshold Photon Absorption Nonlinear Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Berezovskii, Yu. A. Bykovskii, S. N. Potanin andI. S. Rez,Sov. J. Quant. Electron. 3 (1973) 134–135.Google Scholar
  2. 2.
    V. V. Arsen'ev, V. S. Dneprovskii, D. N. Klyshko andA. N. Penin,Sov. Phys. JETP 29 (1969) 413–415.Google Scholar
  3. 3.
    F. Bryukner, V. S. Dneprovskii andV. U. Khattatov,Sov. J. Quant. Electron. 4 (1974) 749–751.Google Scholar
  4. 4.
    J. M. Ralston andR. K. Chang,Optoelectronics 1 (1969) 182–188;App. Phys. Letts. 15 (1969) 164–166.Google Scholar
  5. 5.
    W. B. Gandrud andR. L. Abrams ibid 17 (1971) 302–305.Google Scholar
  6. 6.
    C. A. Schwartz, J-L. Oudar andE. M. Batifol,IEEE J. Quant. Elect. QE11 (1975) 616–623.J-L. Oudar, C. A. Schwartz, E. M. Batifol ibid, 623–629.Google Scholar
  7. 7.
    D. A. Kleinman, R. C. Miller andW. A. Nordland,App. Phys. Letts. 23 (1973) 243–244.Google Scholar
  8. 8.
    C. C. Lee andH. Y. Fan,ibid 20 (1972) 18–20.Google Scholar
  9. 9.
    D. C. Hanna, B. Luther-Davies andR. C. Smith,ibid 22 (1973) 440–442.Google Scholar
  10. 10.
    J. A. Weiss andL. S. Goldberg,ibid 24 (1974) 389–391.Google Scholar
  11. 11.
    B. Luther-Davies, R. C. Smith andR. Wyatt,App. Phys. 7 (1975) 215–226.Google Scholar
  12. 12.
    H. P. Weber,IEEE J. Quant. Elect. QE7 (1971) 189–195.Google Scholar
  13. 13.
    R. L. Herbst andR. L. Byer,App. Phys. Letts. 19 (1971) 527–530.Google Scholar
  14. 14.
    D. C. Hanna, B. Luther-Davies andR. C. Smith,Electronic Letts. 8 (1972) 369–370;Opto-electronics 4 (1972) 249–256.Google Scholar
  15. 15.
    A. F. Gibson, C. B. Hatch, P. N. D. Maggs, D. R. Tilley andA. C. Walker, 2nd National Quantum Electronics Conference, Oxford, UK (1975).Google Scholar
  16. 16.
    C. F. Dewey Jr andL. O. Hocker,App. Phys. Letts. 26 (1975) 442–444.Google Scholar
  17. 17.
    T. S. Moss, G. J. Burrell andB. Ellis,Semi-conductor Opto-Electronics (Butterworths, London, 1973), pp. 36–42.Google Scholar
  18. 18.
    N. Hase andM. Onuki,App. Phys. Letts. 11 (1967) 27–28.Google Scholar
  19. 19.
    D. C. Hanna, B. Luther-Davies, R. C. Smith andR. Wyatt,ibid 25 (1974) 142–144.Google Scholar
  20. 20.
    D. C. Hanna, V. V. Rampal andR. C. Smith IEEE J. Quant. Elect. QE10 (1974) 461–462.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1976

Authors and Affiliations

  • D. C. Hanna
    • 1
  • A. J. Turner
    • 1
  1. 1.Department of ElectronicsUniversity of SouthamptonSouthamptonUK

Personalised recommendations