Optical and Quantum Electronics

, Volume 24, Issue 8, pp 851–859 | Cite as

Application of a femtosecond self-sustaining mode-locked Ti:sapphire laser to the field of laser scanning confocal microscopy

  • P. F. Curley
  • A. I. Ferguson
  • J. G. White
  • W. B. Amos
Special Features


Developments in ultrafast Ti:sapphire laser technology can be applied in the investigation of nonlinear optical processes. We describe the application of a self-sustaining femtosecond Ti:sapphire laser as an illumination source in the field of confocal laser scanning fluorescence microscopy (LSM). We present spectra for various fluorescent stains under two-photon excitation and present LSM images of stained samples under mode-locked illumination. The potential for such a system as a non-destructive technique for studying live cells in biomedical research is discussed.


Live Cell Communication Network Confocal Microscopy Sapphire Laser Scanning Confocal Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Roy, P. A. Schulz andA. Walther,Opt. Lett. 12 (1987) 672.Google Scholar
  2. 2.
    Private communication., Coherent Laser Group, Palo Alto, CA 94303, USA.Google Scholar
  3. 3.
    P. F. Moulton,J. Opt. Soc. Am. B 3 (1986) 125.Google Scholar
  4. 4.
    W. H. Glenn,IEEE J. Quantum Electron QE5 (1969) 284.Google Scholar
  5. 5.
    Private communication., Spectra Physics, Mountain View, CA 94039, USA.Google Scholar
  6. 6.
    P. F. Curley andA. I. Ferguson,Opt. Lett. 16(5) (1991) 321.Google Scholar
  7. 7.
    P. F. Curley andA. I. Ferguson,Opt. Commun. 80(5) (1991) 365.Google Scholar
  8. 8.
    W. L. Peticolas, J. P. Goldsborough andK. E. Rieckhoff,Phys. Rev. Lett. 10(2) (1963) 43.Google Scholar
  9. 9.
    R. Y. Tsien,Methods Cell Biol. 30, Part B (1989) 127.Google Scholar
  10. 10.
    J. G. White, W. B. Amos andM. Fordham,J. Cell. Biol. 105 (1987) 41.Google Scholar
  11. 11.
    W. Denk, J. H. Strickler andW. W. Webb,Science: Reports 248 (1990) 73.Google Scholar
  12. 12.
    M. Minsky,Rev. Scanning 10 (1988) 128.Google Scholar
  13. 13.
    M. D. Egger,Rev. Trends Neurosci 12 (1989) 11.Google Scholar
  14. 14.
    D. A. Parthenopoulos andP. M. Rentzepis,Science: Reports 245 (1989) 843.Google Scholar
  15. 15.
    D. E. Spence, P. Kean andW. Sibbett,Opt. Lett. 16 (1991) 42.Google Scholar
  16. 16.
    G. T. Maker andA. I. Ferguson,Opt. Lett. 15 (1990) 375.Google Scholar
  17. 17.
    G. P. A. Malcolm andA. I. Ferguson,Opt. Commun. 82(3) (1991) 299.Google Scholar
  18. 18.
    J. Harrison, A. Finch, D. M. Rines, G. A. Rines andP. F. Moulton,Opt. Lett. 16(8) (1991) 581.Google Scholar
  19. 19.
    Ch. Spielmann, F. Krausz, T. Brabec, E. Witner andA. J. Schmidt,Opt. Lett. 16(15) (1991) 1180.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • P. F. Curley
    • 1
  • A. I. Ferguson
    • 1
  • J. G. White
    • 2
  • W. B. Amos
    • 2
  1. 1.Department of Physics and Applied PhysicsUniversity of StrathclydeGlasgowUK
  2. 2.Laboratory of Molecular BiologyMedical Research CouncilCambridgeUK

Personalised recommendations