Advertisement

Journal of Comparative Physiology A

, Volume 165, Issue 3, pp 321–331 | Cite as

The gear change mechanism of the blowfly (Calliphora erythrocephala) in tethered flight

  • Gerbera Nalbach
Article

Summary

  1. 1.

    The wing beat ofCalliphora was observed stroboscopically in tethered flight. Two synchronized video cameras filmed the macroscopic wing movements and the microscopic events in the wing articulation.

     
  2. 2.

    The radial stop (RS) never contacts the pleural wing process (PWP) during the upper turning of the wing. This is in contradiction to Pfau's models (1973, 1985, 1987) of the gear change mechanism.

     
  3. 3.

    The contact of the RS and the PWP during the lower half of the wing cycle occurs only rarely. To describe normal flight (no contact at all), the novel models of dipteran wing beat (Miyan and Ewing 1985 a, b, 1988; Ennos 1987) have to be modified.

     
  4. 4.

    Three basic operating modes of the wing articulation were observed during the lower half of the wing cycle (Fig. 2): The RS engages in the posterior (mode 1) or in the anterior (mode 2) groove of the PWP, or the RS moves into a cleft anterior of the PWP without touching the latter (mode 3). A fourth mode (mode 0: The RS stays behind the PWP) is seldomly observed and seems to be rather unphysiological. The correlation of the modes with the peaks in the downstroke amplitude distribution (Fig. 5) indicates that in modes 1 and 2 the PWP acts as a wing stop during downstroke.

     
  5. 5.

    The amplitude can also be reduced during mode 3 (variant mode 3h). The contact with the PWP is not necessary for the reduction of the downstroke amplitude (Fig. 7).

     
  6. 6.

    In most spontaneous maneuvres observed, unilateral mode change to mode 3h, 2, or 1 resulted in reduced downstroke amplitudes and delayed supination at the lower turning point (Figs. 3d, 6). The possible involvement of the different modes in the separation of roll- and yawtorque production is discussed.

     
  7. 7.

    It is discussed which muscles and sclerites might produce the mode changes.

     

Keywords

Video Camera Turning Point Lower Half Variant Mode Mode Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

M.b1

anterior basalar muscle

M.b2

sternobasalar muscle

M.I1-2

muscles of the axillare 1

M.III1-4

muscles of the axillare 3

PtC

pterale C

PWP

pleural wing process

RS

radial stop

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boettiger EG, Furshpan E (1952) The mechanics of flight movements in Diptera. Biol Bull Mar Biol Lab (Woods Hole) 102:200–211Google Scholar
  2. Ennos AR (1987) A comparative study of the flight mechanism of Diptera. J Exp Biol 127:355–372Google Scholar
  3. Faust R (1952) Untersuchungen zum Halterenproblem. Zool Jahrb Physiol 63:325–366Google Scholar
  4. Götz KG, Hengstenberg B, Biesinger R (1979) Optomotor control of wing beat and body posture inDrosophila. Biol Cybern 35:101–112Google Scholar
  5. Heide G (1971 a) Die Funktion der nicht-fibrillären Flugmuskeln vonCalliphora. I. Lage, Insertionsstellen und Innervationsmuster der Muskeln. Zool Jahrb Abt Allg Zool Physiol 76:87–98Google Scholar
  6. Heide G (1971 b) Die Funktion der nicht-fibrillären Flugmuskeln vonCalliphora. II. Muskuläre Mechanismen der Flugsteuerung und ihre nervöse Kontrolle. Zool Jahrb Abt Allg Zool Physiol 76:99–137Google Scholar
  7. Heide G (1975) Properties of a motor output system involved in the optomotor response in flies. Biol Cybern 20:99–112Google Scholar
  8. Heide G (1983) Neural mechanisms of flight control in Diptera. In: Nachtigall W (ed) BIONA-report 2. Fischer, Stuttgart New York, pp 35–52Google Scholar
  9. Hengstenberg R, Sandeman DC, Hengstenberg B (1986) Compensatory head roll in the blowflyCalliphora during flight. Proc R Soc Lond B 227:455–482Google Scholar
  10. Hirth C (1981) Elektrophysiologische Untersuchungen über die Bildung der Impulsmuster in den neuromotorischen Systemen nicht-fibrillärer Flugmuskeln von Schmeißfliegen (Calliphora). Dissertation, Universität DüsseldorfGoogle Scholar
  11. Hirth C, Heide G (1980) Der Einfluß der mechanoreceptorischen Afferenzen auf das Aktivitätsmuster nicht-fibrillärer Flugsteuermuskeln vonCalliphora. Verh Dtsch Zool Ges 73:340Google Scholar
  12. Miyan JA, Ewing AW (1984) A wing synchronous receptor for the dipteran flight motor. J Insect Physiol 307:567–574Google Scholar
  13. Miyan JA, Ewing AW (1985a) Is the ‘click’ mechanism of dipteran flight an artefact of CCl4 anaesthesia? J Exp Biol 116:313–322Google Scholar
  14. Miyan JA, Ewing AW (1985b) How Diptera move their wings: a re-examination of the wing base articulation and muscle systems concerned with flight. Phil Trans R Soc Lond Ser B 311:271–302Google Scholar
  15. Miyan JA, Ewing AW (1988) Further observations on the dipteran flight: details of the mechanism. J Exp Biol 136:229–241Google Scholar
  16. Nachtigall W (1966) Die Kinematik der Schlagflügelbewegungen von Dipteren. Methodische und analytische Grundlagen zur Biophysik des Insektenfluges. Z Vergl Physiol 52:155–211Google Scholar
  17. Nachtigall W, Roth W (1983) Correlations between stationary measurable parameters of wing movement and aerodynamical force production in the blowfly (Calliphora vicina R.-D.). J Comp Physiol 150:251–260Google Scholar
  18. Nalbach G (1985) Die Haltere als Drehsinnesorgan. Wiss. Arbeit, FB Biologie, Universität TübingenGoogle Scholar
  19. Nalbach G (1988 a) How doesCalliphora use the gear change mechanism during flight steering? Verh Dtsch Zool Ges 81:352Google Scholar
  20. Nalbach G (1988b) Linear oscillations elicit haltere mediated turning illusions and entrainment in the blowflyCalliphora. In: Elsner N, Barth FG (eds) Sense organs. Interfaces between environment and behavior. Thieme, Stuttgart New York, p 131Google Scholar
  21. Pfau HK (1973) Fliegt unsere Schmeißfliege mit Gangschaltung? Naturwissenschaften 60:160Google Scholar
  22. Pfau HK (1985) Zur funktionellen und phylogenetischen Bedeutung der ‘Gangschaltung’ der Fliegen. Verh Dtsch Zool Ges 78:168Google Scholar
  23. Pfau HK (1987) Critical comments on a ‘novel mechanical model of dipteran flight’ (Miyan and Ewing 1985). J Exp Biol 128:463–468Google Scholar
  24. Ritter W (1911) The flying apparatus of the blowfly. Smithson Misc Collect 56:1–76Google Scholar
  25. Srinivasan MV (1977) A visually evoked roll response in the house fly. Open-loop and closed-loop studies. J comp Physiol 119:1–14Google Scholar
  26. Wisser A (1988) Wing beat ofCalliphora erythrocephala: turning axis and gearbox of the wing base (Insecta, Diptera). Zoomorphology 107:359–369Google Scholar
  27. Wisser A, Nachtigall W (1984) Functional-morphological investigations on the flight muscles and their insertion points in the blowflyCalliphora erythrocephala (Insecta, Diptera). Zoomorphology 104:188–195Google Scholar
  28. Zanker JM (1987) Über die Flugkrafterzeugung und Flugkraftsteuerung der FruchtfliegeDrosophila melanogaster. Dissertation, Universität TübingenGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Gerbera Nalbach
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingen 1Germany

Personalised recommendations