Solar Physics

, Volume 143, Issue 1, pp 69–88 | Cite as

Nonlinearity effects on resonant absorption of surface Alfvén waves in incompressible plasmas

  • M. S. Ruderman
  • Marcel Goossens


The resonant absorption of small amplitude surface Alfvén waves is studied in nonlinear incompressible MHD for a viscous and resistive plasma. The reductive perturbation method is used to obtain the equation that governs the spatial and temporal behaviour of small amplitude nonlinear surface Alfvén waves. Numerical solutions to this equation are obtained under the initial condition that att = 0 the spatial variation is purely sinusoidal. The numerical results show that nonlinearity accelerates the wave damping due to resonant absorption. Resonant absorption is a more efficient wave damping mechanism than can be anticipated on the basis of linear theory.


Spatial Variation Small Amplitude Linear Theory Nonlinearity Effect Perturbation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Davila, J. M.: 1987,Astrophys. J. 317, 514.Google Scholar
  2. Einaudi, G. and Mok, Y.: 1987,Astrophys. J. 319, 520.Google Scholar
  3. Goossens, M. and Poedts, S.: 1992,Astrophys. J. 384, 348.Google Scholar
  4. Grossman, W. and Smith, R.: 1988,Astrophys. J. 332, 476.Google Scholar
  5. Hollweg, J. V.: 1987a,Astrophys. J. 312, 880.Google Scholar
  6. Hollweg, J. V.: 1987b,Astrophys. J. 317, 918.Google Scholar
  7. Hollweg, J. V.: 1988,Astrophys. J. 335, 1005.Google Scholar
  8. Hollweg, J. V.: 1990,J. Geophys. Res. 95, 2319.Google Scholar
  9. Hollweg, J. V. and Yang, G.: 1988,J. Geophys. Res. 93, 5423.Google Scholar
  10. Lee, M. A. and Roberts, B.: 1986,Astrophys. J. 301, 430.Google Scholar
  11. Lou, Y. Q.: 1990,Astrophys. J. 350, 452.Google Scholar
  12. Mok, Y. and Einaudi, G.: 1985,J. Plasma Phys. 33, 199.Google Scholar
  13. Poedts, S. and Kerner, W.: 1992,J. Plasma Phys. 47, 139.Google Scholar
  14. Poedts, S., Goossens, M., and Kerner, W.: 1989,Solar Phys. 123, 83.Google Scholar
  15. Poedts, S., Goossens, M., and Kerner, W.: 1990a,Astrophys. J. 360, 279.Google Scholar
  16. Poedts, S., Goossens, M., and Kerner, W.: 1990b,Comp. Phys. Comm. 59, 95.Google Scholar
  17. Rae, I. C. and Roberts, B.: 1981,Geophys. Astrophys. Fluid Dyn. 18, 197.Google Scholar
  18. Ruderman, M. S.: 1985,Fluid Dynamics 20, 85 (translated from Russian).Google Scholar
  19. Ruderman, M. S.: 1986,Fluid Dynamics 21, 925 (translated from Russian).Google Scholar
  20. Ruderman, M. S.: 1988,Plasma Phys. Contr. Fusion 30, 1117.Google Scholar
  21. Ruderman, M. S.: 1990,Proc. 1st Colloquium COSPAR ‘Physics of the Outer Heliosphere’, Warsaw, Poland, 1989, p. 249.Google Scholar
  22. Ruderman, M. S.: 1992,Astrophys. J. 399.Google Scholar
  23. Sakurai, T., Goossens, M., and Hollweg, J. V.: 1991,Solar Phys. 133, 247.Google Scholar
  24. Steinolfson, R. S., Priest, E. R., Poedts, S., Nocera, L., and Goossens, M.: 1986,Astrophys. J. 304, 526.Google Scholar
  25. Taniuti, J.: 1974,Suppl. Prog. Theor. Phys., No. 55, 1.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • M. S. Ruderman
    • 1
  • Marcel Goossens
    • 2
  1. 1.Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia
  2. 2.Center for Plasma AstrophysicsK.U. LeuvenHeverleeBelgium

Personalised recommendations