Applied Physics A

, Volume 27, Issue 4, pp 197–206 | Cite as

Electrical properties and defect model of tin-doped indium oxide layers

  • G. Frank
  • H. Köstlin
Contributed Papers

Abstract

Tin-doped In2O3 layers were prepared by the spray technique with doping concentrationscSn between 1 and 20 at. % and annealed at 500 °C in gas atmospheres of varying oxygen partial pressures. The room-temperature electrical properties were measured. Maximum carrier concentrationsN=1.5×1021cm−3 and minimum resistivities ϱ=1.3×10−4 Ω cm are obtained if the layers are doped withcSn≈9 at. % and annealed in an atmosphere of oxygen partial pressurepO2 ⋦10−20 bar. At fixed doping concentration, the carrier mobility increases with decreasing oxygen pressure. The maximum obtainable mobility can be described in terms of electron scattering by ionized impurities. From an analysis of the carrier concentration and additional precision measurements of the lattice constants and film thicknesses, a defect model for In2O3:Sn is developed. This comprises two kinds of interstitial oxygen, one of which is loosely bound to tin, the other forming a strongly bound Sn2O4 complex. At low doping concentrationcSn≲4 at. % the carrier concentration is governed by the loosely bound tin-oxygen defects which decompose if the oxygen partial pressure is low. The carrier concentration follows from a relationN=K1 ·pO2−1/8 ·(3 ×1010 × cSnN)1/4 with an equilibrium constantK1=1.4×1015 cm−9/4bar1/8, determined from our measurements.

PACS

73.60. Fw 81.40. Rs 82.60. Hc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.B.Frazer: Proc. IEEE61, 1013–1018 (1973)Google Scholar
  2. 2.
    R.R.Mehta, S.F.Vogel: J. Electochem. Soc.119, 752–756 (1972)Google Scholar
  3. 3.
    J.B.DuBow, D.E.Burk: Appl. Phys. Lett.29, 494–496 (1976)Google Scholar
  4. 4.
    H.J.J. van Boort, R.Groth: Philips Techn. Rev.29, 17–18 (1968)Google Scholar
  5. 5.
    J.C.C.Fan, F.J.Bachner: Appl. Opt.15, 1012–1017 (1976)Google Scholar
  6. 6.
    S.Yoshida: Appl. Opt.17, 145–150 (1978)Google Scholar
  7. 7.
    H.K östlin: Philips Techn. Rev.34, 242–243 (1974)Google Scholar
  8. 8.
    J.A.Thornton, V.L.Hedgcoth: J. Vac. Sci. Technol.13, 117–121 (1976)Google Scholar
  9. 9.
    H.W.Lehmann, R.Widmer: Thin Solid Films27, 359–368 (1975)Google Scholar
  10. 10.
    D.B.Frazer, H.D.Cook: J. Electrochem. Soc.119, 1368–1374 (1972)Google Scholar
  11. 11.
    J.C.C.Fan, F.J.Bachner: J. Electrochem. Soc.122, 1719–1725 (1975)Google Scholar
  12. 12.
    P.Nath, R.F.Bunshah: Thin Solid Films69, 63–68 (1980)Google Scholar
  13. 13.
    J.Kane, H.P.Schweizer, W.Kern: Thin Solid Films29, 155–163 (1975)Google Scholar
  14. 14.
    D.K.Ranadive, F.T.J.Smith, R.P.Khosla: Proc. 6th Intern. Conf. Chemical Vapor Deposition 1977 (The Electrochem. Soc. 1978) pp. 448–460Google Scholar
  15. 15.
    R.Groth: Phys. stat. sol.14, 69–75 (1966)Google Scholar
  16. 16.
    A.Raza, O.P.Agnihotri, B.K.Gupta: J.Phys. D (Appl. Phys.)10, 1871–1876 (1977)Google Scholar
  17. 17.
    J.C.Manifacier, M.de Murcia, U.P.Fillard: Mater. Res. Bull.10, 1215–1220 (1975)Google Scholar
  18. 18.
    J.L.Vossen: RCA Rev.32, 289–296 (1971)Google Scholar
  19. 19.
    J.M.Pankratz: J. Electron. Mater.1, 1–9 (1972)Google Scholar
  20. 20.
    W.G.Haines, R.H.Bube: J. Appl. Phys.49, 304–307 (1978)Google Scholar
  21. 21.
    G.Frank, E.Kauer, H.Köstlin: Thin Solid Films77, 107–117 (1981)Google Scholar
  22. 22.
    O.P.Agnihotri, A.K.Sharma, B.K.Gupta, R.Thangaraj: J. Phys. D (Appl. Phys.)11, 643–647 (1978)Google Scholar
  23. 23.
    H.Hoffmann, J.Pickl, M.Schmidt: Appl. Phys.16, 239–246 (1978)Google Scholar
  24. 24.
    V.M.Vainshtein, V.I.Fistul: Sov. Phys. Semicond.4, 1278–1281 (1971)Google Scholar
  25. 25.
    J.L. van der Pauw: Philips Res. Rep.13, 1–9 (1958)Google Scholar
  26. 26.
    R.Clanget: Appl. Phys.2, 247–256 (1973)Google Scholar
  27. 27.
    G.Frank, H.Köstlin, A.Rabenau: Phys. stat. sol. (a)52, 231–238 (1979)Google Scholar
  28. 28.
    J.H.W. de Wit: J. Solid State Chem.20, 143–148 (1977)Google Scholar
  29. 29.
    J.H.W. de Wit, G. van Unen, M.Lahey: J. Phys. Chem. Solids38, 819–824 (1977)Google Scholar
  30. 30.
    M.Hecq, A.Dubois, J. van Cakenberghe: Thin Solid Films18, 117–125 (1973)Google Scholar
  31. 31.
    H.Köstlin, R.Jost, W.Lems: Phys. stat. sol. (a)29, 87–93 (1975)Google Scholar
  32. 32.
    E.C.Subbarao, P.H.Sutter, J.Hrizo: J. Am. Ceram. Soc.48, 443–446 (1965)Google Scholar
  33. 33.
    D.J.McDowell, R.W.Scheidecker, M.F.Berard: J. Solid State Chem.23, 357–360 (1978)Google Scholar
  34. 34.
    J.C.C.Fan, J.B.Goodenough: J. Appl. Phys.48, 3524–3531 (1977)Google Scholar
  35. 35.
    F.A.Kröger:The Chemistry of Imperfect Crystals, Vol. 2, (North-Holland, Amsterdam 1974) pp. 690–694Google Scholar
  36. 36.
    D.Chatterji, R.W.Vest: J. Am. Ceram. Soc.55, 575–578 (1972)Google Scholar
  37. 37.
    R.L.Weiher: J. Appl. Phys.33, 2834–2839 (1962)Google Scholar
  38. 38.
    J.E.Morris, M.I.Ridge, C.A.Bishop, R.A.Howson: J. Appl. Phys.51, 1847–1849 (1980)Google Scholar
  39. 39.
    V.F.Korzo, V.N.Chernyaev: Phys. stat. sol. (a)20, 695–705 (1973)Google Scholar
  40. 40.
    H.K.Müller: Phys. stat. sol.27, 723–731, 733–740 (1968)Google Scholar
  41. 41.
    R.B.Dingle: Philos. Mag.46, 831–840 (1955)Google Scholar
  42. 42.
    C.Erginsoy: Phys. Rev.79, 1013–1014 (1950)Google Scholar
  43. 43.
    H.Koch: Phys. stat. sol.3, 1059–1071, 1619–1628 (1963);7, 263–275 (1964)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • G. Frank
    • 1
  • H. Köstlin
    • 1
  1. 1.Philips GmbH Forschungslaboratorium AachenAachenFed. Rep. Germany

Personalised recommendations