Journal of Superconductivity

, Volume 4, Issue 5, pp 393–396 | Cite as

On the temperature dependence of the London penetration depth in a superconductor

  • G. M. Eliashberg
  • G. V. Klimovitch
  • A. V. Rylyakov


In the framework of the electron-phonon theory of superconductivity [1], it is shown that the magnetic field penetration depthδL increases like a certain power of temperature atT≪Tc due to the low-lying excitations in the phonon spectrum. For the acoustic phonons with the density of states ∼ω2 the penetration depth increases ∼T5. The origin of such a high power ofT is the same as that in the case of resistivity of the normal metal: the phonon corrections to the electromagnetic vertex should be taken into account, and major terms (∼T3) cancel, the surviving ones having a higher power ofT. The possibility of linear and quadratic terms inδL(T) is discussed in a model of electrons interacting with two-level centers [2].

Key words

London penetration depth temperature dependence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. M. Eliashberg,Zh. Eksp. Teor. Phys. 39, 1437 (1960);Sov. Phys. JETP 12, 1000 (1961).Google Scholar
  2. 2.
    G. M. Eliashberg,Pis'ma Zh. Eksp. Teor. Phys. 45, 28 (1987);Sov. Phys. JETP Lett. 45, 35 (1987).Google Scholar
  3. 3.
    U. F. Annett, N. D. Goldnhfeld, and S. R. Renn, inPhysical Properties of High Temperature Superconductors II, D. M. Ginsberg, ed. (World Scientific, New Jersey, 1990) p. 571.Google Scholar
  4. 4.
    L. Krusin-Elbaum, R. L. Greene, F. Holtzberget al., Phys. Rev. Lett. 82, 217 (1989).Google Scholar
  5. 5.
    B. Pümpin, H. Keller, W. Kündiget al., Physica C 162–164, 151 (1989).Google Scholar
  6. 6.
    D. R. Harshmann, L. F. Schneemeyer, J. V. Waszczaket al., Phys. Rev. B 39, 851 (1989).Google Scholar
  7. 7.
    V. F. Gantmakher, N. I. Golovko, I. G. Naumenkoet al., Phisica C 171, 223 (1990).Google Scholar
  8. 8.
    J. F. Cooper, C. T. Chu, L. W. Zhouet al., Phys. Rev. B 37, 638 (1988).Google Scholar
  9. 9.
    O. V. Dolgov, A. A. Golubov, and A. E. Koshelev,Solid State Commun. 72, 81 (1989).Google Scholar
  10. 10.
    A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinsky, inMethods of Quantum Field Theory in Statistical Physics, R. A. Silverman, ed. (Dover Publications, New York, 1975) p. 338.Google Scholar
  11. 11.
    D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins,Phys. Rev. 148, 263 (1966).Google Scholar
  12. 12.
    G. V. Klimovitch, A. V. Rylyakov, G. M. Eliashberg,Pis'ma Zh. Eksp. Teor. Phys. 53, 377 (1991).Google Scholar
  13. 13.
    J. P. Carbotte,Rev. Mod. Phys. 62, 1027 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • G. M. Eliashberg
    • 1
  • G. V. Klimovitch
    • 1
  • A. V. Rylyakov
    • 1
  1. 1.Grenoble High Magnetic Field LaboratoryCentre National de la Recherche Scientifique and Max Planck Institut für FestkörperforschungGrenobleFrance

Personalised recommendations