Advertisement

Journal of Superconductivity

, Volume 6, Issue 2, pp 99–106 | Cite as

Fullerene superconductivity by short-range order instability

  • A. Szasz
Article

Abstract

For the fullerene-group (C60 group) of metastable materials a novel model is conceptualized on the basis of a special dynamic clustering. This clustering is realized by a short-range instability through a collective, cooperative, and coherent displacement of the ions to seek for the most dense and most stable cluster formation. In the C60 superconductivity, mediation by harmonic lattice vibrations (phonons) is replaced by a pairing mechanism with anharmonic collective and coherent cluster vibrations. The suggested model fits the experimental data surprisingly well.

Key words

Fullerenes cluster formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Anderson and J. R. Schrieffer,Phys. Today, p. 55, June, 1991.Google Scholar
  2. 2.
    J. Bardeen, L. N. Cooper and J. R. Schrieffer,Phys. Rev. 108, 1157 (1957).Google Scholar
  3. 3.
    F. Laves, inTheory of Alloy Phases (Am. Soc. Metals, Cleveland 1956), p. 124.Google Scholar
  4. 4.
    F. C. Frank and J. S. KasperActa Cryst. 11, 184 (1958); F. C. Frank and J. S. Kasper,Acta Cryst. 12, 483 (1959).Google Scholar
  5. 5.
    H. S. M. Coxeter,Regular Polytopes (Methuen, London, 1948), p. 5.Google Scholar
  6. 6.
    D. R. Nelson and F. Spaepen,Solid State Phys. 42, 1 (1989).Google Scholar
  7. 7.
    S. Narashimhan and M. V. Jaric,Phys. Rev. Lett. 62, 454 (1989).Google Scholar
  8. 8.
    M. Widom,Phys. Rev. B 31, 6456 (1985).Google Scholar
  9. 9.
    R. Penrose, inIntroduction to the Mathematics of Quasicrystals, M. V. Jarie, ed. (Academic Press, Boston, 1989), p. 53.Google Scholar
  10. 10.
    R. C. Haddon, L. E. Brus, and K. Raghavachari,Chem. Phys. Lett. 125, 459 (1986).Google Scholar
  11. 11.
    H. A. Szasz,J. Supercond. 4, 3 (1991).Google Scholar
  12. 12.
    A. Szasz, in:Strongly Correlated Electronic Systems and High-T c Superconductivity, E. Zipper, R. Manka, M. Maska, eds. (World Scientific, Singapore, London, 1991), p. 168.Google Scholar
  13. 13.
    A. Szasz, Yu. A. Kopaev, and A. DasGupta,Phys. Lett. A 152, 361 (1991).Google Scholar
  14. 14.
    J. F. Sadoc,J. Phys. 44, L707 (1983).Google Scholar
  15. 15.
    W. Hume-Rothery,J. Inst. Met. 35, 295, 307 (1926).Google Scholar
  16. 15a.
    W. Hume-Rothery, G. W. Mabbott and K. M. Channel-Evans,Philos. Trans. R. Soc. London A 233, 1 (1934).Google Scholar
  17. 16.
    N. F. Mott and H. Jones,The Theory of Properties of Metals and Alloys (Dover, New York, 1958).Google Scholar
  18. 17.
    H. H. Jones,The Theory of Brillouin Zones and Electronic States in Crystals (North-Holland, Amsterdam, 1960).Google Scholar
  19. 18.
    A. Szasz,J. Non-cryst. Solids 127, 121 (1991).Google Scholar
  20. 19.
    D. S. Rokshar,Phys. Rev. B 35, 5487 (1987).Google Scholar
  21. 20.
    A. K. Niessen, A. R. Miedema, F. R. deBoer and R. Boom,Physica B 151, 401 (1988).Google Scholar
  22. 21.
    O. B. Pettifor,J. Phys. C 3, 367 (1970); A. Zangwill and R. Bruinsma,Commun. Cond. Matter Phys. 13, 1 (1987); H. L. Skrivier,Phys. Rev. B 31, 1909 (1985).Google Scholar
  23. 22.
    A. Szasz and D. J. Fabian, in:Physics and Materials Science of High-Temperature Superconductors, R. Kossowsky, S. Methfessel, D. Wohlleben, eds., NATO ASI Series, E Vol. 181 (Kluwer Academic, 1990), p. 233.Google Scholar
  24. 23.
    M. Widom, in:Introduction to Quasicrystals, M. V. Jarie, ed, (Academic Press, Boston, 1988), p. 59.Google Scholar
  25. 24.
    R. P. Sharma, L. E. Rehn, P. M. Baldo and J. Z. Liu,Phys. Rev. Lett. 62, 2869 (1989); T. Haga, K. Yamaya, Y. Abe, T. Tajima, and Y. Hidaka,Phys. Rev. B 41, 826 (1990).Google Scholar
  26. 25.
    B. H. Toby, T. Egami, J. D. Jorgensen, and M. A. Subramanian,Phys. Rev. Lett. 64, 2414 (1990).Google Scholar
  27. 26.
    J. Mustre de Leon, S. D. Condradson, I. Batistic, and A. R. Bishop,Phys. Rev. Lett. 65, 1675 (1990).Google Scholar
  28. 27.
    T. Claeson, J. B. Boyce, and T. H. Geballe,Phys. Rev. B 25, 6666 (1982); G. S. Cargill III., R. F. Boehme, and W. Weber,Phys. Rev. Lett. 50, 1391 (1983).Google Scholar
  29. 28.
    W. Weber,J. Phys. F. (Met. Phys.) 17, 27 (1987).Google Scholar
  30. 29.
    A. Khurana,Phys. Today 42, 19 (1989).Google Scholar
  31. 30.
    L. F. Mattheis,Phys. Rev. Lett. 58, 1028 (1987).Google Scholar
  32. 31.
    J. D. Jorgensen, H. B. Sch-ttler, D. G. Hinks, D. W. Capone, I. K. Zhang, M. B. Brodsky, and D. J. Scalapino,Phys. Rev. Lett. 58, 1024 (1987).Google Scholar
  33. 32.
    A. Szasz and D. J. Fabian,Solid State Commun. 65, 1085 (1988).Google Scholar
  34. 33.
    A. Szasz and D. J. Fabian,Physica C 153–155, 1205 (1988).Google Scholar
  35. 34.
    J. A. Northby, J. Xie, D. L. Freemann, and J. D. Dall,Z. Phys. D, At. Mol. Cluster 12, 69 (1989).Google Scholar
  36. 35.
    Z. L. Weng, T. K. Lee, and E. S. Ting,Phys. Rev. B 38, 6561 (1988).Google Scholar
  37. 36.
    A. A. Gorbatsevich, V. F. Elesin and Yu. V. Kapaev,Pis'ma Zh. Eksp. Theor. Fiz. 46, 116 (1987) [Sov. Phys. JETP Lett. 46, 597 (1987)].Google Scholar
  38. 37.
    D. Emin,Physica C 162–164, 799 (1989); D. Emin,Phys. Rev. Lett. 62, 1544 (1989); D. Emin and M. S. Hillery:Phys. Rev. B 39, 6575 (1989).Google Scholar
  39. 38.
    D. Emin, in:Physics and Material Science of High-Temperature Superconductivity II NATO ASI Summer School, August 18–31. 1991. Porto Carras, Greece.Google Scholar
  40. 39.
    E. Teller,Proceedings of the World Congress of Superconductivity, Houston, Texas, February 20–24. 1988, C. C. Burnham and R. D. Kane, eds., (World Scientific, Singapore, 1988), p. 303.Google Scholar
  41. 40.
    S. R. Nagel and J. Taue,Phys. Rev. Lett. 35, 380 (1975).Google Scholar
  42. 41.
    R. Oppermann,Z. Phys. B 70, 49 (1988).Google Scholar
  43. 42.
    J. C. Phillips,Phys. Rev. Lett. 59, 1856 (1987).Google Scholar
  44. 43.
    R. Kneutzler,Solid State Commun. 63, 671 (1987).Google Scholar
  45. 44.
    T. Takahasi, T. Morikava, S. Hasegawa, K. Kamiya, H. Fujimoto, S. Hino, K. Seki, H. Katayama-Yoshida, H. Inokuchi, K. Kukuchi, S. Suzuki, K. Ikemoto, and Y. Achiba:Physica C 190, 205 (1992).Google Scholar
  46. 45.
    M. W. Long,J. Phys. Cond. Matter 3, 6387 (1991).Google Scholar
  47. 46.
    E. W. Kwam,TheoChem 77, 335 (1991).Google Scholar
  48. 47.
    R. D. Parks (ed.),Superconductivity, (Marcel Dekker, New York, 1969); J. W. Garland, Jr.,Phys. Rev. Lett. 11, 114 (1963); J. C. Phillips,Physics of High-T Superconductors (Academic Press, Boston, 1989); W. L. McMillan,Phys. Rev. 167, 331 (1968).Google Scholar
  49. 48.
    P. C. Hohenberg,Phys. Rev. 158, 383 (1967).Google Scholar
  50. 49.
    A. Szasz,J. Supercond. 4, 17 (1991).Google Scholar
  51. 50.
    U. Poppe, N. Klein, U. Dahne, H. Soltner, C. L. Jia, B. Kabius, K. Urban, A. Lubig, K. Schmidt, S. Hensen, S. Orbach, G. Müller, and H. Piel:J. Appl. Phys.,71, 5572 (1992)Google Scholar
  52. 51.
    Y. Z. Li, M. Chander, J. C. Patrin, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley.Science,253, 429 (1991)Google Scholar
  53. 52.
    D. M. Poirier, T. R. Ohno, G. H. Kroll, Y. Chen, P. J. Benning, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley,Science,253, 646 (1991)Google Scholar
  54. 53.
    K. Holczeret al., Science 252, 1154 (1991).Google Scholar
  55. 54.
    C.-C. Chen, S. P. Kelty, and C. M. Lieber,Science 253, 887 (1991).Google Scholar
  56. 55.
    K. Tanigaki, T. W. Ebbesen, S. Salto, J. Mizuki, J. S. Tsai, Y. Kubo, and S. Kuroshima:Nature (London) 352, 222, 1991.Google Scholar
  57. 56.
    Z. Iqbal, R. H. Bughman, B. L. Ramakrishna, S. Khare, N. S. Murthy, H. J. Bornemann, and D. E. Morris, Preprint,High T Update,5, No. 17, 8 (1991).Google Scholar
  58. 57.
    K. Tanigaki, L. Hirisawa, T. W. Ebbesen, J. Mizuki, Y. Shimakawa, Y. Kubo, J. S. Tsai, and S. Kuroshima,Nature (London) 356, 419 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. Szasz
    • 1
    • 2
  1. 1.Department of Atomic PhysicsEotvos University BudapestBudapestHungary
  2. 2.Institute of Solid State PhysicsForschungszenter JulichJulichGermany

Personalised recommendations