Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Geräuschanalyse der Tanzlaute der Honigbiene (Apis mellifica) in unterschiedlichen magnetischen Feldsituationen

Analysis of the sounds produced in dancing honeybees (Apis mellifica) during exposure to different magnetic field situations

  • 39 Accesses

  • 7 Citations

Summary

The sounds produced by forager bees during the “straight run” of their waggle-dances show significant periodic variations throughout the day, as regards both single pulses (Einzelton) and the sequence of vibrational pulses (Vibrationsstoßfolge).

The daily courses of these two components are strongly correlated with each other, and also correlated with the daily variation in misdirection (“Mißweisung”) in the bees' dances, and thus with the periodic variations of the intensity of the earth's magnetic field (Figs. 3 to 5).

Thus, the variations in the sounds produced represent at the same time the daily course of misdirection.

Although individual bees produce sounds of different basic pitches (Basistonlagen) — with maximum wavelengths of the two components mentioned — the absolute range of change is about the same for all dancing bees (single pulses: 0.3 ms/10° misdirection, sequences of vibrational pulses: 2.0 ms/10° misdirection).

Amplification of natural field strength by a factor of about 3 to 5 does not abolish the strong correlations existing between the two sound components and misdirection; the range of changing, on the contrary, increases with the amplification of field strength (Figs. 6 and 7).

Under conditions that eliminate misdirection, e. g. compensation for the magnetic field (Figs. 8 and 9) or dancing on a horizontal comb — regardless of whether the observations are done under natural field strength (Fig. 10) or following artificial amplification of field intensity (Fig. 11) — the dancing bees produce their basic pitches throughout the day. On the vertical comb, the same phenomenon is noticed at the socalled zeropoints, under conditions of both normal and increased field strength.

If bees are foraging far away from their hive, the sounds they produced when they return always start from their individual basic pitches and adapt, within a few minutes, to the wavelengths characteristic of the prevailing situation as regards field strength and dancing angle (Fig. 12).

In general, the organization of the sounds essentially confirms former results, although their mean frequency range is somewhat higher (278 Hz for the single pulse and 33 Hz for the sequence of vibrational pulses resp.).

A peculiar feature of the dance of only two bees is described, the so-called “continuous sound”. These two bees produced sounds both during the tail-wagging run and the return half cycle.

The general mechanism of the field effect and the mechanism of reception of magnetic stimuli are discussed, as well as the possibility of sound communication in honeybees.

This is a preview of subscription content, log in to check access.

Literatur

  1. Angenheister, G.: Verliert die Erde ihr Magnetfeld? Umschau25, 939 (1971)

  2. Autrum, H.: Über Energie- und Zeitgrenzen der Sinnesempfindungen. Naturwissenschaften35, 361–369 (1948)

  3. Autrum, H., Schneider, W.: Vergleichende Untersuchung über den Erschütterungssinn der Insekten. Z. Vergl. Physiol.31, 77–88 (1948)

  4. Barnothy, M.F.: Biological effects of magnetic fields. 2 Vol., New York: Plenum Press 1964 und 1969

  5. Becker, G.: Zur Magnetfeldorientierung von Dipteren. Z. Vergl. Physiol.51, 135–150 (1965)

  6. Becker, G., Speck, U.: Untersuchung über die Magnetfeld-Orientierung von Dipteren. Z. Vergl. Physiol.49, 301–340 (1964)

  7. Cohen, D.: Magnetoencephalography: Detection of the brain's electrical activity with a superconducting magnetometer. Science175, 644–666 (1972)

  8. Cohen, D., Gilver, E.: Magnetomyography: Magnetic fields around the human body produced by skeletal muscles. Appl. Phys. Lett.21, 114–116 (1972)

  9. Cohen, D., McCaughan, D.: Magnetocardiograms and their variations over the chest in normal subjects. Am. J. Cardiol.29, 678–685 (1972)

  10. Elsner, N., Huber, F.: Neurale Grundlagen artspezifischer Kommunikation bei Orthopteren. Fortschr. Zool.22/1, 1–48 (1973)

  11. Esch, H.: Ein neuer Bewegungstyp im Schwänzeltanz der Biene. Naturwissenschaften48, 140–141 (1961a)

  12. Esch, H.: Über die Schallerzeugung beim Werbetanz der Honigbiene. Z. Vergl. Physiol.45, 1–11 (1961b)

  13. Esch, H.: Auch Lautäußerungen gehören zur Sprache der Bienen. Umschau62, 293–296 (1962)

  14. Esch, H.: Über die Auswirkungen der Futterplatzqualität auf die Schallerzeugung im Werbetanz der Honigbiene. Verh. Deutsch. Zool. Ges. 302–309 (1962)

  15. Esch, H.: The sounds produced by flies and bees. Z. Vergl. Physiol.54, 265–267 (1967a)

  16. Esch, H.: Die Bedeutung der Lauterzeugung für die Verständigung der stachellosen Bienen. Z. Vergl. Physiol.56, 199–220 (1967b)

  17. Esch, H.: The sounds produced by swarming honeybees. Z. Vergl. Pysiol.56, 408–411 (1967c)

  18. Esch, H.: The evolution of bee-language. Sci. Am.216, 96–102 (1967d)

  19. Esch, H., Esch, I., Kerr, W.: Sound: An element common to communication of stingless bees and to dances of the honey bee. Science149, 320–321 (1965)

  20. Frisch, K. von: Tanzsprache und Orientierung der Bienen. Berlin, Heidelberg, New York: Springer 1965

  21. Keeton, W.T.: The mystery of pigeon homing. Sci. Am.231, 96–107 (1974)

  22. Kertz, W.: Einführung in die Geophysik. 2 Bde., Mannheim, Wien, Zürich: Bibliographisches Institut 1969 und 1971

  23. Kilbert, K.: Dissertation, Würzburg 1977

  24. Koeniger, N.: Kommunikative Schallerzeugung vonApis cerana im Bienenvolk. Naturwissenschaften59, 169 (1972)

  25. Lindauer, M., Martin, H.: Die Schwereorientierung der Bienen unter dem Einfluß des Erdmagnetfeldes. Z. Vergl. Physiol.60, 219–243 (1968)

  26. Lopatina, N.G.: The individual experience of the bee on distance information to honey bees family. In: Schramke, H. (1971)

  27. Martin, H., Lindauer, M.: Sinnesphysiologische Leistungen beim Wabenbau der Honigbiene. Z. Vergl. Physiol.53, 372–404 (1966)

  28. Martin, H., Lindauer, M.: Orientierung im Erdmagnetfeld. Fortschr. Zool.21, 211–228 (1973)

  29. Martin, H., Lindauer, M.: Der Einfluß des Erdmagnetfeldes auf die Schwereorientierung der Honigbiene. J. Comp. Physiol.122, 145–187 (1977)

  30. Schaefer, E.: Magnettechnik. Würzburg: Vogel-Verlag 1969

  31. Schlieper, C.: Praktikum der Zoophysiologie. Berlin: Fischer 1965

  32. Schneider, P.: Versuche zur Erzeugung des Verteidigungstons bei Hummeln. Zool. Jb. Physiol.79, 111–127 (1975)

  33. Schramke, H.: Wie windabhängig sind die Zeitabläufe im Schwänzeltanz der Honigbiene? Dissertation, Universität Graz (1971)

  34. Smith, D.E.: Biological effects of magnetic fields. A bibliography. Varian Associates, Analytical Instrument Division, 611 Hansen Way, Palo Alto, California 1970

  35. Wenner, A.M.: Sound production during the waggle dance of the honey bee. Anim. Behav.10, 59–79 (1962)

  36. Wenner, A.M.: Sound communication in honey bees. Sci. Am.210, 115–124 (1964)

  37. Wenner, A.M., Wells, H.P., Rohlf, F.J.: An analysis of the waggle dance and recruitment in honey bees. Physiol. Zool.40, 317–344 (1967)

  38. Wiltschko, W., Wiltschko, R.: Die Bedeutung des Magnetkompasses für die Orientierung der Vögel. J. Ornithol.117, 362–387 (1976)

Download references

Author information

Additional information

Herrn Professor H. Martin in Dankbarkeit gewidmet

Teil der Dissertation

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kilbert, K. Geräuschanalyse der Tanzlaute der Honigbiene (Apis mellifica) in unterschiedlichen magnetischen Feldsituationen. J. Comp. Physiol. 132, 11–25 (1979). https://doi.org/10.1007/BF00617728

Download citation