Applied Physics A

, Volume 41, Issue 3, pp 223–232 | Cite as

On the mechanism of liquid metal ion sources

  • L. W. Swanson
  • D. R. Kingham
Surfaces, Interfaces, and Layer Structures


We have developed a theoretical model of liquid metal ion source operation which consistently explains the shape and size of the ion emitting region, the mechanism of ion formation and properties of the ion beam. We find that field evaporation is the main current generating mechanism and that field evaporation and subsequent postionization produce the doubly and higher charged ions. Field ionization of thermally evaporated neutrals may make a significant, but not dominant, contribution to the current of singly charged ions. Our model is consistent with experimental results on energy spread, energy deficit and charge state ratios and we are able to explain the stability of the emitted ion current.


79.70.+q 41.80.Gg 07.80.+x 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.E. Krohn, G.R. Ringo: Appl. Phys. Lett.27, 479 (1975)Google Scholar
  2. 2.
    K.L. Aitken, G.L.R. Mair: J. Phys.13, 2165 (1980)Google Scholar
  3. 3.
    A. Dixon, C. Colliex, R. Ohana, P. Sudraud, J. Van de Walle: Phys. Rev. Lett.46, 865 (1981)Google Scholar
  4. 4.
    J. Van de Walle, P. Sudraud: Proc. 29th Intern. Field Emission Symposium, Goteborg, Sweden, ed. by H.-O. Andren and H. Norden (Almqvist and Wiksell, Stockholm 1982) p. 341Google Scholar
  5. 5.
    R. Gomer: Appl. Phys.19, 365 (1979)Google Scholar
  6. 6.
    P.D. Prewett, G.L.R. Mair, S.P. Thompson: J. Phys. D15, 1339 (1982)Google Scholar
  7. 7.
    T. Ishitani, H. Tamura: Appl. Phys.23, 193 (1980)Google Scholar
  8. 8.
    D.R. Kingham: Appl. Phys. A31, 161 (1983)Google Scholar
  9. 9.
    D.R. Kingham, L.W. Swanson: Appl. Phys. A34, 123 (1984)Google Scholar
  10. 10.
    D.R. Kingham, L.W. Swanson: Appl. Phys. A41, 157–169 (1986)Google Scholar
  11. 11.
    G.I. Taylor: Proc. R. Soc. (London) A280, 383 (1964)Google Scholar
  12. 12.
    H. Gaubi, P. Sudraud, M. Tence, J. Van de Walle: Proc. 29th Intern. Field Emission Symposium, Goteborg, Sweden, ed. by H.-O. Andren and H. Norden (Almqvist and Wiksell, Stockholm 1982) p. 357Google Scholar
  13. 13.
    P. Sudraud: Reported at 30th Intern. Field Emission Symposium, Philadelphia (1983), and at 31st Intern. Field Emission Symposium, Paris (1984)Google Scholar
  14. 14.
    N.K. Kang, L.W. Swanson: Appl. Phys. A30, 95 (1983)Google Scholar
  15. 15.
    D.R. Kingham, L.W. Swanson: Vacuum34, 941 (1984)Google Scholar
  16. 16.
    D.R. Kingham, L.W. Swanson: J. Physique45, C9–139 (1984)Google Scholar
  17. 17.
    D.R. Kingham, A.E. Bell: J. Physique45, C9–139 (1984)Google Scholar
  18. 18.
    L.W. Swanson: Nucl. Instrum. Methods218, 347 (1983)Google Scholar
  19. 19.
    N. Sujatha, P.H. Cutler, E. Kazes, J.P. Rogers, N.M. Miskovsky: Appl. Phys. A32, 55 (1983)Google Scholar
  20. 20.
    D.R. Kingham, A.E. Bell: Appl. Phys. A36, 67 (1985)Google Scholar
  21. 21.
    M. Chung, P.H. Cutler, T.E. Feuchtwang, E. Kazes: (Reply to [20]) Appl. Phys. A36, 171 (1985)Google Scholar
  22. 22.
    R.G. Forbes: J. Physique45, C9–161 (1984)Google Scholar
  23. 23.
    S.P. Thompson, P.D. Prewett: J. Phys. D17, 2305 (1984)Google Scholar
  24. 24.
    A. Dixon, C. Colliex, P. Sudraud, J. Van de Walle: Surf. Sci.108, L424 (1981)Google Scholar
  25. 25.
    D.R. Kingham: Surf. Sci.116, 273 (1982)Google Scholar
  26. 26.
    R.G. Forbes, G.L.R. Mair: J. Phys. D15, L153 (1982)Google Scholar
  27. 27.
    T.T. Tsong: Surf. Sci.70, 211 (1978)Google Scholar
  28. 28.
    D. Broughton, R. Clampitt: Vacuum34, 275 (1984)Google Scholar
  29. 29.
    A.E. Bell, G.A. Schwind, L.W. Swanson: J. Appl. Phys.53, 4602 (1982)Google Scholar
  30. 30.
    A.R. Waugh: Proc. 28th Intern. Field Emission Symposium, Portland, Oregon (1981), ed. by L.W. Swanson, A.E. BellGoogle Scholar
  31. 31.
    A. Menand, D.R. Kingham: J. Phys. D17, 203 (1984)Google Scholar
  32. 32.
    T. Ishitani, K. Umemura, Y. Kawanami: J. Phys. D18, 163 (1985)Google Scholar
  33. 33.
    M.A. Gesley, D.L. Larson, L.W. Swanson, C.H. Hinrichs: Proc. SPIE471, 66 (1984)Google Scholar
  34. 34.
    M.A. Gesley, L.W. Swanson: J. Physique45, C9–167 (1984)Google Scholar
  35. 35.
    W. Knauer: Optik59, 335 (1981)Google Scholar
  36. 36.
    G.L.R. Mair, D.C. Grindrod, M.S. Mousa, R.V. Latham: J. Phys. D16, L209 (1983)Google Scholar
  37. 37.
    A.J. Jason: Phys. Rev.156, 266 (1967)Google Scholar
  38. 38.
    G.L. Kellog: Appl. Surf. Sci.11/12, 186 (1982)Google Scholar
  39. 39.
    R.J. Culbertson, G.H. Robertson, T. Sakurai: J. Vac. Sci. Technol.16, 1868 (1979)Google Scholar
  40. 40.
    P. Sudraud, C. Colliex, J. Van de Walle: J. Physique Lett.40, L207 (1979)Google Scholar
  41. 41.
    A.J. Dixon: J. Phys. D12, L77 (1979)Google Scholar
  42. 42.
    A.R. Waugh: J. Phys. D13, L203 (1980)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • L. W. Swanson
    • 1
  • D. R. Kingham
    • 2
  1. 1.Oregon Graduate CenterBeavertonUSA
  2. 2.Cavendish LaboratoryCambridgeUK

Personalised recommendations