Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Surface polarization effect on positron backdiffusion from dielectrics

  • 29 Accesses

  • 12 Citations

Abstract

The reduction of the thermal positron backdiffusion probability from a dielectric, due to the electrostatic polarization of the surface, has been calculated in the framework of an isothermal diffusion model. Our results show that this reduction can pass from levels of only a few percent (e.g., Si and Ge at room temperature) to almost complete suppression for substances with short positron diffusion length and at low temperatures. It is also shown that the surface polarization effect can be ignored in measurements of the positron diffusion constant with beam techniques if the low-energy part of the backdiffusion probability vs. beam energy curve is not included in the analysis.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A.P. Mills, Jr.: InPositron Solid-State Physics, ed. by W. Brandt, A. Dupasquier (North-Holland, Amsterdam 1983) p. 432

  2. 2.

    A. Dupasquier, A. Zecca: Riv. Nuovo Cimento8, 12 (1985)

  3. 3.

    W. Brandt, R. Ripon, R. Paulin: Phys. Rev. Lett.31, 1214 (1973); also Appl. Phys.4, 343 (1974)

  4. 4.

    K. Saarinen, P. Hautojärvi, H. Huomo, P. Huttunen, A. Vehanen: European Meeting on Positron Studies of Defects (Wernigerode, GDR, March 1987) (unpublished)

  5. 5.

    A. Many, Y. Goldstein, N.B. Grover: Semiconductor Surfaces (North-Holland, Amsterdam 1971)

  6. 6.

    A.M. Stoneham: Intel. Conf. on Defects in Ionic Crystals (El Escorial, Spain, 1986) Proc. (to be published)

  7. 7.

    A.M. Stoneham, P.W. Tusker: J. Phys. C18, L 543 (1985)

  8. 8.

    W.R. Smythe:Static and Dynamic Electricity, 2nd ed. (McGraw-Hill, New York 1950) p. 115

  9. 9.

    S. Valkealahti, K.M. Nieminen: Appl. Phys. A32, 95 (1983)

  10. 10.

    H.H. Jorch, K.G. Lynn, T. McMullen: Phys. Rev. B30, 96 (1984)

  11. 11.

    B. Nielsen, K.G. Lynn, A. Vehanen, P.J. Schultz: InPositron Annihilation, ed. by P.C. Jain, R.M. Singru, K.P. Gopinathan (World Scientific, Singapore 1985) p. 717

  12. 12.

    A.P. Mills, Jr., W.S. Crane: Phys. Rev. Lett.53, 2165 (1984)

  13. 13.

    M. Eldrup, A. Vehanen, P.S. Schultz, K.G. Lynn: Phys. Rev. Lett.51, 2007 (1983); also: Phys. Rev. B32, 7048 (1985)

  14. 14.

    P. Sferlazzo, S. Berko, K.F. Canter: Phys. Rev. B32, 6067 (1985)

  15. 15.

    H.E. Hansen, U. Ingerslev-Jensen: J. Phys. D16, 1353 (1983)

  16. 16.

    A.P. Mills, Jr., R. Wilson: Phys. Rev. A26, 490 (1982)

  17. 17.

    E. Gast, Th. Gast: InLandolt-Börnstein Zahlenwerte und Funktionen,II/6, ed. by K.H. Hellwege, A.M. Hellwege (Springer, Berlin, Göttingen 1959) p. 451

  18. 18.

    J. Appel:Solid State Phys.21, 193 (Academic, New York 1968)

  19. 19.

    J. de Launay:Solid State Phys.2, (Academic, New York 1956)

  20. 20.

    G. Dahlquist, Å. Björck:Numerical Methods (Prentice-Hall, Englewood Cliffs, NJ 1974)

  21. 21.

    H.H. Jorch, K.G. Lynn, I.K. MacKenzie: Phys. Rev. Lett.47, 363 (1981)

Download references

Author information

Additional information

Work jointly supported by the Ministero della Pubblica Istruzione and by the Consiglio Nazionale delle Ricerche, Gruppo Nazionale di Struttura della Materia

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dupasquier, A., Quartapelle, L. Surface polarization effect on positron backdiffusion from dielectrics. Appl. Phys. A 44, 239–244 (1987). https://doi.org/10.1007/BF00616696

Download citation

PACS

  • 71.60
  • 78.70B
  • 72.90