Applied Physics A

, Volume 26, Issue 2, pp 125–130 | Cite as

Concerning bounds on the transport and mechanical properties of multicomponent composite materials

  • G. W. Milton
Contributed Papers

Abstract

The Hashin-Shtrikman and Walpole bounds for the transport properties and bulk modulus of multicomponent composite materials are shown to be attained in a wide range of cases. Thus in these cases the bounds are the best possible bounds that can be given in terms of the properties of the components and the volume fractions. For three-component materials new bounds are conjectured. The conjectured bounds are presumed to apply in the cases where the Hashin-Shtrikman and Walpole bounds are not attained.

PACS

72.90.+ y 44.30 + v 46.30.Cn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.K.Hale: J. Mater. Sci.11, 2105–2141 (1976)Google Scholar
  2. 2.
    B.Abeles, J.I.Gittleman: Appl. Opt.15, 2328–2332 (1976)Google Scholar
  3. 3.
    Z.Hashin: Appl. Mech. Rev.17, 1–9 (1964)Google Scholar
  4. 4.
    M.Beran: Phys. Status Solidi (a)6, 365–384 (1971)Google Scholar
  5. 5.
    M.Beran: Isr. J. Technol.11, 301–308 (1973)Google Scholar
  6. 6.
    J.P.Watt, G.F.Davies, R.J.O'Connell: Rev. Geophys.14, 541–563 (1976)Google Scholar
  7. 7.
    R.Landauer: InElectrical Transport and Optical Properties of Inhomogeneous Media, ed. by J.C.Garland and D.B.Tanner (American Institute of Physics, New York 1978) pp. 2–43Google Scholar
  8. 8.
    R.C.McPhedran, D.R.McKenzie: Proc. R. Soc. Lond. A359, 45–63 (1978)Google Scholar
  9. 9.
    D.R.McKenzie, R.C.McPhedran, G.H.Derrick: Proc. R. Soc. Lond. A362, 211–232 (1978)Google Scholar
  10. 10.
    W.T.Perrins, D.R.McKenzie, R.C.McPhedran: Proc. R. Soc. Lond. A369, 207–225 (1979)Google Scholar
  11. 11.
    D.J.Bergman: Phys. Rep.43, 377–407 (1978)Google Scholar
  12. 12.
    D.J.Bergman: J. Phys. C12, 4947–4960 (1979)Google Scholar
  13. 13.
    D.J.Bergmann: Phys. Rev. B23, 3058–3065 (1981)Google Scholar
  14. 14.
    D.J.Bergman: Phys. Rev. Lett.44, 1285–1287 (1980)Google Scholar
  15. 15.
    G.W.Milton: Appl. Phys. Lett.37, 300–302 (1980)Google Scholar
  16. 16.
    G.W.Milton: J. Appl. Phys. (in press)Google Scholar
  17. 17.
    G.W.Milton: J. Appl. Phys. (in press)Google Scholar
  18. 18.
    Z.Hashin, S.Shtrikman: J. Appl. Phys.33, 3125–3131 (1962)Google Scholar
  19. 19.
    Z.Hashin, S.Shtrikman: J. Mech. Phys. Solids11, 127–140 (1963)Google Scholar
  20. 20.
    L.J.Walpole: J. Mech. Phys. Solids14, 151–162 (1966)Google Scholar
  21. 21.
    R. A.Schapery: J. Comp. Mater.2, 380–404 (1968)Google Scholar
  22. 22.
    B.W.Rosen, Z.Hashin; Int. J. Eng. Sci.8, 157–173 (1970)Google Scholar
  23. 23.
    Z.Hashin: J. Mech. Phys. Solids13, 119–134 (1965)Google Scholar
  24. 24.
    Z.Hashin: InMechanics of Composite Materials, ed. by F.W.Wendt, H.Liebowitz, and N.Perrone (Pergamon Press, New York 1970) pp. 201–242Google Scholar
  25. 25.
    R.Hill: J. Mech. Phys. Solids12, 199–212 (1964)Google Scholar
  26. 26.
    Z.Hashin, B.W.Rosen: J. Appl. Mech., Trans. ASME31, 223–232 (1964)Google Scholar
  27. 27.
    K.Schulgasser: Int. J. Heat Mass Trans.20, 1273–1280 (1977)Google Scholar
  28. 28.
    G.P.DeLoor: Thesis, University of Leiden, Leiden (1956)Google Scholar
  29. 29.
    K.Schulgasser: J. Phys. C10, 407–417 (1977)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • G. W. Milton
    • 1
  1. 1.Department of Theoretical PhysicsThe University of SydneySydneyAustralia

Personalised recommendations