Applied Physics A

, Volume 32, Issue 3, pp 141–154

Photothermal displacement spectroscopy: An optical probe for solids and surfaces

  • M. A. Olmstead
  • N. M. Amer
  • S. Kohn
  • D. Fournier
  • A. C. Boccara
Contributed Papers


We present a sensitive technique for determining the optical and thermal properties of solids, surfaces and thin films. This technique, photothermal displacement Spectroscopy, is based on the detection of the thermal expansion of a sample upon absorption of electromagnetic radiation. The technique is well suited for in situ ultrahigh vacuum studies and for experiments where wide temperature ranges are required. We show that surface and bulk optical absorption can be distinguished and that surface absorptions of αL=10−6/W of incident power can be measured. The theoretical basis of the signal generation is given, and excellent experimental and theoretical agreement is demonstrated. The implications of our findings to imaging and microscopy are discussed.


73 78 65 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.g., reviews by H. Lüth: Appl. Phys.8, 1 (1975)Google Scholar
  2. 1a.
    G. Heiland, W. Mönch: Surf. Sci.37, 30 (1973)Google Scholar
  3. 1b.
    G. Chiarotti: Recent Developments in Condensed Matter Physics1, 633 (Plenum Press, New York 1981) and references thereinGoogle Scholar
  4. 2.
    A. Hordvick: Appl. Opt.16, 2827 (1977)Google Scholar
  5. 3.
    Other photothermal techniques include photoacoustic spectroscopy [see, for example:Optoacoustic Spectroscopy and Derection, ed. by Y.-H. Pao (Academic Press, New York 1977); W.B. Jackson, N.M. Amer: J. Appl. Phys.51, 3343 (1980)]; photothermal deflection spectroscopy [W.B. Jackson, N.M. Amer, A.C. Boccara, D. Fournier: Appl. Opt.20, 1333 (1981)]; and photothermal radiometry [S.O. Kanstad, P.-E. Nordal: Appl. Surf. Sci.6, 372 (1980)]; among others. However, none of those techniques meet all the requirements for experiments which require ultrahigh vacuum, high spatial resolution, cryogenics or the high temperatures necessary for annealing many materialsGoogle Scholar
  6. 4.
    S. Ameri, E. A. Ash, V. Neumann, C. R. Petts: Electron. Lett.17, 337 (1981)Google Scholar
  7. 5.
    See, for example: I. Ohlidal, F. Lukes, K. Navratil: J. Phys. (Paris)38, C5–77 (1977)Google Scholar
  8. 6.
    Y.S. Touloukian, R.W. Powell, C.Y. Ho, M.C. Nicolaou: “Thermal Diffusivity”,Thermophysical Properties of Matter, Vol. X (IFI/Plenum Press, New York 1973)Google Scholar
  9. 7.
    A.C. Boccara, D. Fournier, J. Badoz: Appl. Phys. Lett.36, 130 (1980)Google Scholar
  10. 7a.
    A.C. Boccara, D. Fournier, W. Jackson, N.M. Amer: Opt. Lett.5, 377 (1980)Google Scholar
  11. 8.
    M.A. Olmstead, N.M. Amer: J. Vac. Sci. Technol. B1, 751 (1983)Google Scholar
  12. 9.
    E.D. Huber, S.O. Sari: Rev. Sci. Instrum.50, 438 (1979)Google Scholar
  13. 10.
    W. Nowacki:Thermoelasticity (Pergamon Press, Oxford 1962)Google Scholar
  14. 11.
    J.D. Jackson:Classical Electrodynamics (Wiley, New York 1975) p. 132Google Scholar
  15. 12.
    S.M. Sze:Physics of Semiconductor Devices (Wiley, New York 1981)Google Scholar
  16. 13.
    American Institute of Physics Handbook, ed. by D.E. Gray (McGraw-Hill, New York 1972)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • M. A. Olmstead
    • 1
  • N. M. Amer
    • 1
  • S. Kohn
    • 1
  • D. Fournier
    • 2
  • A. C. Boccara
    • 2
  1. 1.Applied Physics and Laser Spectroscopy Group, Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Laboratoire d'Optique PhysiqueEcole Supérieure de Physique et de ChimieParis CedexFrance
  3. 3.Aerospace CorporationLos AngelesUSA

Personalised recommendations