Advertisement

Applied Physics A

, Volume 42, Issue 4, pp 317–326 | Cite as

Effects of diffraction conditions and processes on rheed intensity oscillations during the MBE growth of GaAs

  • J. Zhang
  • J. H. Neave
  • P. J. Dobson
  • B. A. Joyce
Surfaces, Interfaces, and Layer Structures

Abstract

The RHEED intensity oscillation technique has received wide-spread attention for the study of MBE growth dynamics, but insufficient consideration has been given to the diffraction conditions and processes involved. We report here a systematic investigation of the intensity oscillation behaviour as a function of diffraction parameters (azimuth, incidence angle, specular and non-specular beams), with constant growth conditions for GaAs films on GaAs (001) substrates.

We show that many reported anomalies attributed to growth effects, such as phase differences and periodicity variations, can be accounted for entirely by diffraction events, provided it is realised that multiple scattering processes are the dominant cause of RHEED intensity variations during growth.

The technique can provide valuable information on growth behaviour, but only if diffraction-dependent effects are first eliminated.

PACS

61.14.Hg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.H. Neave, B.A. Joyce, P.J. Dobson, N. Norton: Appl. Phys. A31, 1 (1983)Google Scholar
  2. 2.
    J.M. Van Hove, C.S. Lent, P.R. Pukite, P.I. Cohen: J. Vac. Sci. Technol. B1, 741 (1983)Google Scholar
  3. 3.
    P.K. Larsen, P.J. Dobson, J.H. Neave, B.A. Joyce, B. Bölger, J. Zhang: Surf. Sci.169, 176 (1986)Google Scholar
  4. 4.
    P.A. Doyle: Acta. Cryst. A25, (1969) 569Google Scholar
  5. 5.
    S. Takagi, T. Seto: 6th Int'l. Congress for Electron Microscopy, Kyoto, Japan, (1966) Vol. 1, 65Google Scholar
  6. 6.
    J.L. Beeby: Surf. Sci.80, 56 (1979)Google Scholar
  7. 7.
    A. Madhukar, S.V. Ghaisas, T.C. Lee, M.Y. Chen, P. Chen, J.Y. Kim, P.G. Newman: Proc. SPIE524, 78 (1985)Google Scholar
  8. 8.
    B.F. Lewis, F.J. Grunthaner, A. Madhukar, T.C. Lee, R. Fernandez: J. Vac. Sci. Technol. B3, 1317 (1985)Google Scholar
  9. 9.
    P.I. Cohen, P.R. Pukite, J.M. Van Hove, C.S. Lent: J. Vac. Sci. Technol. A4, 1251 (1986)Google Scholar
  10. 10.
    T. Sakamoto, N.J. Kawai, T. Nakagawa, K. Ohta, T. Kojima: Appl. Phys. Lett.47, 617 (1985)Google Scholar
  11. 11.
    T. Sakamoto, T. Kawamura, G. Hashiguchi: Appl. Phys. Lett.48, 1612 (1986)Google Scholar
  12. 12.
    H. Sakai, M. Tanaka, J. Yoshino: Japan. J. Appl. Phys.24, L417 (1985)Google Scholar
  13. 13.
    M.Y. Yen, T.C. Lee, P. Chen, A. Madhukar: J. Vac. Sci. Technol. B4, 590 (1986)Google Scholar
  14. 14.
    B.A. Joyce, P.J. Dobson, J.H. Neave, J. Zhang: InTwo-Dimensional Systems: Physics and New Devices, ed. by G. Bauer, F. Kuchar, and H. Heinrich, Springer Series Solid-State Sci.67 (Springer, Berlin, Heidelberg 1986) p. 42Google Scholar
  15. 15.
    P.K. Larsen, G. Meyer-Ehmsen, B. Bölger, A.-J. Hoeven: J. Vac. Sci. Technol. (to be published)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • J. Zhang
    • 1
  • J. H. Neave
    • 2
  • P. J. Dobson
    • 2
  • B. A. Joyce
    • 2
  1. 1.Department of PhysicsImperial College of Science and TechnologySouth Kensington, LondonUK
  2. 2.Philips Research LaboratoriesRedhillUK

Personalised recommendations