Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Methods of fatigue prediction for composite laminates. A review

  • 277 Accesses

  • 5 Citations

This is a preview of subscription content, log in to check access.


  1. 1.

    K. L. Reifsnider, "Life prediction analysis: directions and divagations," Proc. ICCM 6,4, 4.1–4.31 (1987).

  2. 2.

    P. P. Oldyrev and V. P. Tamuzh, "Multicycle fatigue of composite materials," Zh. Vses. Khim. Ova. im. D. I. Mendeleeva,24, No. 5, 545–552 (1989).

  3. 3.

    G. P. Sendeckyj, "Life prediction for resin-matrix composite materials," in: Composite Materials Series, Vol. 4, Fatigue of Composite Materials, K. L. Reifsnider (eded.) (1992), pp. 431–483.

  4. 4.

    P. P. Oldyrev, "Determination of the fatigue life of plastics with the self-heating temperature," Mekh. Polim., No. 1, 111–117 (1967).

  5. 5.

    P. P. Oldyrev, V. M. Parfeev, and V. I. Komar, "Refinement of the method of determining the fatigue life of polymeric materials with the heat-up temperature," Mekh. Polim., No. 5, 906–913 (1977).

  6. 6.

    I. P. Bareishis, G. S. Sinitskas, and A. P. Stirbis, "Prediction of the fatigue life of polymeric and composite materials," Mekh. Kompozitn. Mater., No. 6, 1010–1015 (1983).

  7. 7.

    Yu. V. Suvorova, A. M. Dumanskii, V. B. Strekalov, and I. M. Makhmutov, "Prediction of the characteristics of the fatigue strength of carbon-reinforced plastics with the results of testing for creep and long-term strength," Mekh. Kompozitn. Mater., No. 4, 711–715 (1986).

  8. 8.

    N. E. Sarkisyan, "An approximate model for prediction of the anisotropy of multicycle fatigue strength of composite materials," Mekh. Kompozitn. Mater., No. 5, 914–919 (1986).

  9. 9.

    J. C. Halpin, K. L. Jerina, and T. A. Johnson, "Characterization of composites for the purpose of reliability evaluation," ASTM STP 521, 5–64 (1973).

  10. 10.

    L. J. Broutman and S. A. Sahu, "A new theory to predict cumulative fatigue damage in fiberglass reinforced plastics," ASTM STP 497, 170–188 (1972).

  11. 11.

    P. C. Chou and R. Croman, "Degradation and sudden-death models of fatigue of graphite/epoxy composites," ASTM STP 674, 431–454 (1979).

  12. 12.

    P. C. Chou and R. Croman, "Residual strength in fatigue based on the strength-life equal rank assumption," J. Compos. Mater.,12, 177–194 (1978).

  13. 13.

    J. N. Yang, "Fatigue and residual strength degradation for graphite/epoxy composites under tension-compression cyclic loading," J. Compos. Mater.,12, 19–39 (1978).

  14. 14.

    J. N. Yang and D. L. Jones, "Statistical fatigue of unnotched composite laminates," Proc. ICCM 3,1, 472–483 (1980).

  15. 15.

    J. N. Yang and D. L. Jones, "The effect of load sequence on statistical fatigue of composites," AIAA J.,18, No. 12, 1525–1531 (1980).

  16. 16.

    J. N. Yang and D. L. Jones, "Statistical fatigue of graphite/epoxy angle-ply laminates in shear," Carbon Reinforc. Epoxy Syst., Pt. 2, 76–94 (1982).

  17. 17.

    J. N. Yang and D. L. Jones, "Fatigue of graphite/epoxy [0 °/90 °/+45 °/−45 °]s laminates under dual stress levels," Comp. Techn. Rev.,4, No. 3, 63–70 (1982).

  18. 18.

    J. N. Yang and D. L. Jones, "Load sequence effects on graphite/epoxy [±35]2s laminates," ASTM STP 813, 246–262 (1983).

  19. 19.

    J. N. Yang and Du Shanyi, "An exploratory study for fatigue of composite under spectrum loading," J. Compos. Mater.,17, 511–526 (Nov., 1983).

  20. 20.

    K. Radhakrishnan, "Fatigue and reliability evaluation of unnotched carbon epoxy laminates," J. Compos. Mater.,18, 21–31 (Jan. 1984).

  21. 21.

    T. Tanimoto, H. Ishikawa, S. Amijima, and H. Kimura, "Residual strength degradation model for glass/polyester laminates under repeated tension and compression loadings," Mech. Behav. Mater. IV, 539–547 (1984).

  22. 22.

    J. N. Yang and R. T. Cole, "Fatigue of composite bolted joints under dual load levels," Proc. ICCM-4, 333–340 (1982).

  23. 23.

    W. J. Park and R. Y. Kim, "Special analysis requirements of composite materials," Metals Handbook, Vol. 8 (1985), pp. 713–720.

  24. 24.

    R. Y. Kim, "Effect of mean stresses on fatigue behavior of composite laminates," Proc. ICCM 7,2, 621–626 (1988).

  25. 25.

    T. Adam, R. F. Dickson, C. J. Jones. M. Reiter, and B. Harris, "A power law fatigue damage model for fibre-reinforced plastic laminates," Proc. Inst. Mech. Eng.,200, No. C3, 155–166 (1986).

  26. 26.

    A. Charewicz and I. M. Daniel, "Damage mechanisms and accumulation in graphite/epoxy laminates," ASTM STP 907, 274–297 (1986).

  27. 27.

    V. S. Strelyaev, L. L. Sachkovskaya. V. M. Baikov, and A. F. Rumyantsev, "Characteristics of fatigue failure of carbon-reinforced plastics," Mekh. Kompozitn. Mater., No. 5, 860–865 (1984).

  28. 28.

    H. Hwang and K. S. Han, "Fatigue of composites — fatigue modulus concept and life prediction," J. Compos. Mater..20, 154–165 (March, 1986).

  29. 29.

    H. A. Whitworth, "Modeling stiffness reduction of graphite/epoxy composite laminates," J. Compos. Mater.,21, 362–372 (April, 1987).

  30. 30.

    J. N. Yang, S. H. Yang, and D. L. Jones, "A stiffness-based statistical model for predicting the fatigue life of graphite/epoxy laminates," J. Compos. Techn. Research,11, No. 4, 129–134 (1989).

  31. 31.

    M. F. Crowther and M. S. Starkey, "Use of Weibull statistics to quantify specimen size effects in fatigue of GRP," Compos. Sci. Techn.,31, 87–95 (1988).

  32. 32.

    A. Rotem and H. G. Nelson, "Failure of a laminated composite under tension-compression fatigue loading," Composite Sci. Techn.,36, 45–62 (1989).

  33. 33.

    G. D. Sims and D. G. Gladman, "A framework for specifying the fatigue performance of glass fibre reinforced plastics," NPL Report DMA(A) 59 (Dec., 1982).

  34. 34.

    J. N. Yang, R. K. Miller, and C. T. Sun, "Effect of high load on statistical fatigue of unnotched graphite/epoxy laminates," Carbon Reinforc. Epoxy Syst., Part 3, 56–68 (1982).

  35. 35.

    J. N. Yang and C. T. Sun, "Proof test and fatigue of unnotched composite laminates," Carbon Reinforc. Epoxy Syst., Part 3, 90–98 (1982).

  36. 36.

    V. M. Parfeev, P. P. Oldyrev, and V. P. Tamuzh, "Summation of damage in nonstationary cyclic loading of fiberglass-reinforced plastics." Mekh. Kompozitn. Mater., No. 1, 65–72 (1979).

  37. 37.

    T. Tanimoto. S. Amijima, and M. Ishikawa, "Fatigue life and its reliability of FRP under multistep loading," in: Composite Materials, Tokyo (1981), pp. 145–154.

  38. 38.

    S. Amijima, T. Tanimoto, and T. A. Matsuoka, "A study on the fatigue life estimation of FRP under random loading," Proc. ICCM 4, 701–708 (1982).

  39. 39.

    T. Tanimoto, S. Amijima, and T. Matsuoka, "Fatigue life estimation of laminated GRP materials under various random load patterns," Proc. ICCM 5, 199–210 (1985).

  40. 40.

    A. de Iorio, S. Mignosi, and M. Schiavone, "Fatigue in CFRP under variable amplitude loading," TEQC83, 314–323 (1983).

  41. 41.

    Z. Hashin, "Cumulative damage theory for composite materials: residual life and residual strength methods," Compos. Sci. Tech.,23, 1–19 (1985).

  42. 42.

    W. Hwang and K. S. Han, "Cumulative damage models and multi-stress fatigue life prediction," J. Compos. Mater.,20, 125–153 (1986).

  43. 43.

    I. G. Zavalich and L. A. Shefer, "Prediction of fatigue life based on the characteristic loading parameters," Probl. Prochn., No. 10, 25–30 (1982).

  44. 44.

    Z. Hashin and A. Rotem, "A fatigue failure criterion for fiber reinforced materials," J. Compos. Mater.,7, 443–464 (1973).

  45. 45.

    Z. Hashin, "Fatigue failure criteria for unidirectional fiber composite," J. Appl. Mech.,48, 847–852 (Dec., 1981).

  46. 46.

    Yu. N. Rabotnov, V. M. Kogaev, A. N. Polilov, V. B. Strekalov, and A. M. Dumanskii, "Cyclic strength of unidirectional carbon-reinforced plastics in extension at an angle to the direction of reinforcement," Mekh. Kompozitn. Mater., No. 2, 242–246 (1985).

  47. 47.

    V. G. Perevozchikov, V. A. Limonov, V. D. Protasov, and V. P. Tamuzh, "Static and fatigue strength of unidirectional composites under combined shear stresses and transverse tension-compression stresses," Mekh. Kompozitn. Mater., No. 5, 845–851 (1988).

  48. 48.

    D. F. Sims and V. H. Brogdon, "Fatigue behavior of composites under different loading modes." ASTM STP 636. 185–205 (1977).

  49. 49.

    M. N. Nahas, "Survey of failure and post-failure theories of laminated fiber-reinforced composites," J. Compos. Techn. Res.,8, No. 4, 138–153 (1986).

  50. 50.

    V. P. Tamuzh and V. S. Kuksenko, Micromechanics of Failure of Polymeric Materials [in Russian], Riga (1978).

  51. 51.

    A. Poursartip, M. F. Ashby, and P. W. R. Beaumont, "The fatigue damage mechanics of a carbon fibre composite laminate. II. Life prediction," Compos. Sci. Techn.,25, 283–299 (1986).

  52. 52.

    J. Bogdanoff and F. Kozin, Probability Models of Damage Accumulation [Russian translation], Moscow (1989).

  53. 53.

    W. Hwang and K. S. Han, "Statistical study of strength and fatigue life of composite materials," Composites,11, No. 1, 47–53 (1987).

  54. 54.

    Ihara Chiaki, Misawa Tetsuya, and Shigeyama Yosihide, "A stochastic approach to fatigue damage of carbon fiber composites," Eng. Fracture Mech.,33, No. 3, 476–475 (1989).

  55. 55.

    R. Badaliance, H. D. Dill, and J. M. Potter, "Effects of spectrum variations on fatigue life of composites," ASTM STP 787, 274–286 (1982).

  56. 56.

    R. Talreja, Fatigue of Composite Materials (1985).

  57. 57.

    K. L. Reifsnider and D. Shalev, "Representation of composite material fatigue response as a vibration problem with material nonlinearity," in: Proc. of the ASfC VII Tech. Conf. (1989), pp. 125–133.

  58. 58.

    A. Rotem and Z. Hashin, "Fatigue failure of angle-ply laminates," AIIA J.,17, No. 7, 868–872 (1976).

  59. 59.

    A. Rotem, "Fatigue failure of multidirectional laminate," AIAA J.,17, No. 3, 271–277 (1979).

  60. 60.

    A. Rotem and H. G. Nelson, "Fatigue behaviour of graphite-epoxy laminates at elevated temperatures," ASTM STP 723, 152–173 (1981).

  61. 61.

    A. Rotem, "Fatigue mechanisms of multidirectional laminate under ambient and elevated temperature," Adv. Compos. Mater.,1, 146–161 (1980).

  62. 62.

    A. Rotem, "Fatigue failure mechanism of composite laminates," in: Mechanics of Composite Materials; Recent Advances Proc. IUTAM Symp. (1983), pp. 421–435.

  63. 63.

    R. C. Tennyson, G. Elliot, G. E. Mabson, and M. Tratt, "Failure analysis for composite laminates," AIAA/ASME/ASCF/AAS 25th Struct. Conf., Part 1, pp. 74–84.

  64. 64.

    G. E. Mabson, V. Papathanassis, G. E. Wharram, and R. C. Tennyson, "Spectrum fatigue model for composite laminates," in: Proc. 15th Congr. Intern. Comm. Aeron. Sci., Vol. 2 (1986), pp. 808–819.

  65. 65.

    Y. A. Anderson, V. A. Limonov, V. P. Tamuzh, and V. G. Perevozchikov, "Fatigue of composite laminates with different schemes of reinforcement. 2. Planar stressed state and calculation model," Mekh. Kompozitn. Mater., No. 4, 608–616 (1989).

  66. 66.

    Ya. A. Anderson, V. A. Limonov, and V. P. Tamuzh, "Failure of oblique-angle reinforced composite in axial loading," Mekh. Kompozitn. Mater., No. 2, 231–236 (1990).

  67. 67.

    G. Oytana, D. Perreux, and D. Varchon, "Static and fatigue criteria in multiaxial stress states. Problems posed by prediction," in: Proc. ICCM VI, Vol. 2 (1989), pp. 627–632.

  68. 68.

    I. G. Teregulov and E. S. Sibgatullin, "Method of calculation for fatigue of composite laminate shells and plates," Mekh. Kompozitn. Mater., No. 5, 871–876 (1990).

  69. 69.

    M. M. Ratwani, "Fatigue of composites under spectrum loading," in: Advances in Fracture Research (Fracture-84), Vol. 1 (1984), pp. 587–606.

  70. 70.

    A. Poursartip, M. F. Ashby, and P. W. R. Beaumont, "The fatigue damage mechanics of a carbon fiber composite laminate: I. Development of the model," Compos. Sci. Techn.,25, 193–218 (1986).

  71. 71.

    R. Osiroff, W. W. Stinchcomb, and K. L. Reifsnider, "Damorheology: creep-fatigue interaction in composite laminates," in: Proc. ASfC IV Techn. Conf. (1989), pp. 107–118.

  72. 72.

    V. A. Limonov and Ya. A. Anderson, "Effect of average cycle stress on the fatigue strength of organic plastic," Mekh. Kompozitn. Mater., No. 3, 421–429 (1991).

  73. 73.

    Ya. A. Anderson, V. A. Limonov, and V. P. Tamuzh, "Effect of incoherence of cyclic loading on the fatigue strength of composite fiber laminates in a planar stressed state," Mekh. Kompozitn. Mater., No. 5, 812–822 (1991).

  74. 74.

    Ya. A. Anderson and V. A. Limonov, "Calculation of the fatigue life distribution of a composite laminate," Mekh. Kompozitn. Mater., No. 1, 45–54 (1991).

  75. 75.

    Ya. A. Anderson, M. Ya. Mikelsons, V. P. Tamuzh, and I. V. Tarashchik, "Fatigue failure of a carbon-reinforced plastic laminate," Mekh. Kompozim. Mater., No. 1, 74–78 (1991).

  76. 76.

    K. L. Reifsnider, "The mechanics of fatigue in composite laminates," in: Proc. Japan-US Conference on Composite Materials (1981), pp. 131–144.

  77. 77.

    N. B. Romalis and V. P. Tamuzh. Failure of Structurally Inhomogeneous Bodies [in Russian], Riga (1989).

  78. 78.

    V. V. Bolotin, "Combined model of failure of composite materials under long-acting loads," Mekh. Kompozitn. Mater., No. 3, 405–420 (1981).

  79. 79.

    A. M. Postnykh, A. A. Chekalkin, and V. V. Khronusov, "Structural-statistical model of reliability and life of a fiber composite," Mekh. Kompozim. Mater., No. 5, 866–870 (1990).

  80. 80.

    K. S. Chak and D. L. Davidson. "Driving forces for composite interface fatigue cracks," Eng. Fracture Mech.,33, No. 3, 451–466 (1989).

  81. 81.

    J. F. Mandell and Meier Urs, "Fatigue crack propagation in 0 °/90 ° E-glass/epoxy composites," ASTM STP 569, 28–44 (1975).

  82. 82.

    L. Boniface and S. L. Ogin, "Application of the Paris equation to the fatigue growth of transverse ply cracks," J. Compos. Mater.,23, 735–754 (July. 1988).

  83. 83.

    St. Ogin, P. A. Smith, and P. W. R. Beaumont, "A stress intensity factor approach to the fatigue growth of transverse ply cracks," Compos. Sci. Techn.,24, 47–59 (1985).

  84. 84.

    M. C. Lafarie-Frepot and C. Henaff-Gardin, "Formation and growth of 90 ° ply fatigue cracks in carbon/epoxy laminates," Compos. Sci. Techn..40, 307–324 (1991).

  85. 85.

    J. Aboudi, "Micromechanics prediction of fatigue failure of composite materials," J. Reinfor. Plast. Compos.,8, 15–166 (March, 1989).

  86. 86.

    A. M. Skudra and F. Ya. Bulavs. Strength of Reinforced Plastics fin Russian], Khimiya, Moscow (1982).

  87. 87.

    A. M. Skudra, F. Ya. Bulavs. M. R. Gurvich, and A. A. Kruklin'sh, Elementary Construction Mechanics of Rod Systems Made of Composite Materials [in Russian], Riga (1989).

  88. 88.

    J. Aboudi, "Micromechanical analysis of strength of unidirectional fiber composites," Compos. Sci. Techn. (1988).

  89. 89.

    "Fatigue life prediction: metals and composites," Fracture Mech. Methodol., 1–34 (1984).

  90. 90.

    K. L. Reifsnider, "Damage accumulation and fracture initiation in composite laminates," SAMPE Quarterly, 39–44 (Oct., 1984).

  91. 91.

    K. L. Reifsnider, "The critical element model: a modelling philosophy," Eng. Fracture Mech.,25, Nos. 5/6, 739–749 (1986).

  92. 92.

    K. L. Reifsnider and W. W. Stinchcomb, "A critical element model of the residual strength and life of fatigue-loaded composite coupons," ASTM STP 907. 298–313 (1986).

  93. 93.

    K. Reifsnider, "Damage of composite structures during use," in: Applied Mechanics of Composites [Russian translation], Mir, Moscow (1989), pp. 108–142.

  94. 94.

    K. L. Reifsneider, "Life prediction methods for notched composite laminates," in: Proc. IV Japan-US Conference on Composite Materials (1989). pp. 265–275.

  95. 95.

    K. L. Reifsnider and M. El-Zein. "Notched strength concepts for composite laminates," in: 1st USSR-US Symposium on Composite Materials Temporary Proc. of US Papers (1988), pp. 57–66.

  96. 96.

    K. L. Reifsnider and A. L. Highsmith. "Characteristic damage state: a new approach to representing fatigue damage in composite laminates," in: Materials. Experimentation and Design in Fatigue (1981), pp. 246–260.

  97. 97.

    K. Reifsnider, "Fatigue behavior of composite materials," Intern. J. Fracture,16, No. 6, 563–588 (1980).

  98. 98.

    K. L. Reifsnider and A. Talug. "Analysis of fatigue damage in composite laminates," Intern. J. Fatigue,2, No. 1, 3–11 (1980).

  99. 99.

    K. L. Reifsnider and R. Jamison. "Fracture of fatigue-loaded composite laminates," Intern. J. Fatigue,4, No. 4, 187–197 (1982).

  100. 100.

    M. S. El-Zein and K. L. Reifsnider. "The strength prediction of composite laminates containing a circular hole," J. Compos. Techn. Res.,12, No. 1. 24–30.

  101. 101.

    D. Shalev and K. L. Reifsnider. "Influence of relative ply orientations on the nature of the edge effect singularities for a circular hole in a composite laminate," Intern. J. Solids Struct.,25, No. 10, 1115–1132 (1989).

Download references

Author information

Additional information

Translated from Mekhanika Kompozitnykh Materialov, No. 6, pp. 741–754, November–December, 1993.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andersons, J. Methods of fatigue prediction for composite laminates. A review. Mech Compos Mater 29, 545–554 (1994). https://doi.org/10.1007/BF00616318

Download citation


  • Fatigue
  • Composite Laminate
  • Fatigue Prediction