Applied Physics A

, Volume 49, Issue 2, pp 189–197 | Cite as

Temperature effects in the photolytic LCVD of platinum

  • D. Braichotte
  • H. van den Bergh
Surfaces, Interfaces and Layer Structures


The photolytic laser chemical vapor deposition (LCVD) rate of platinum from its bishexafluoroacetylacetonate precurser has been measured in situ and in real time. Optical transmission of the 350 nm photolysis light through the deposited platinum film and a transparent glass substrate is monitored and analysed in detail. From these measurements, as well as measurements of the reflected light, the fraction of the laser beam power absorbed in the metal film is found. The latter allows a simple estimate of the laser-induced temperature rise at the metal surface. It is shown that even rather small temperature increases of the order of several tens of degrees centigrade can completely change the photolysis mechanism and hence drastically influence the photolytic LCVD rate. A simple modification of Lax's model, in which a temperature dependent thermal conductivity of the substrate is introduced, is used to describe the laser-induced heating of a strongly absorbing thin metal film on a glass substrate.


42.60 81.10 82.65 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bäuerle:Chemical Processing with Lasers, Springer Ser. Mat. Sci., Vol.1 (Springer, Berlin, Heidelberg 1986)Google Scholar
  2. 2.
    D.J. Ehrlich, J.Y. Tsao: J. Vac. Sci. Technol. B1, 969 (1983)Google Scholar
  3. 3.
    D.J. Ehrlich, J.Y. Tsao: InVLSI Electronics: Microstructure Science, Vol.7 (Academic, New York 1983) p. 129Google Scholar
  4. 4.
    R.M. Osgood Jr.: Ann. Rev. Phys. Chem.34, 77 (1983)Google Scholar
  5. 5.
    M. Lax: J. Appl. Phys.48, 3919 (1977)Google Scholar
  6. 6.
    M. Lax: Appl. Phys. Lett.33, 786 (1978)Google Scholar
  7. 7.
    D. Braichotte: PhD Thesis, Ecole Polytechnique Fédérale de Lausanne (1988) Lausanne, SwitzerlandGoogle Scholar
  8. 8.
    Le Verre (éd.): Sovirel, (Pyrex, France) [Ref. 10.902]Google Scholar
  9. 9. a)
    D. Braichotte, H. van den Bergh: In:Emerging Technologies for In Situ Processing, éd. by D.J. Ehrlich, V.T. Nguyen, NATO ASI Series E: Applied Sciences No. 139 (Nijhoff, Dordrecht 1988) p. 83Google Scholar
  10. 10. b)
    D. Braichotte, H. van den Bergh: Appl. Phys. A45, 337 (1988)Google Scholar
  11. 11.
    D. Braichotte, H. van den Bergh: Society for Optical and Quantum Electronics, Proc. Int. Conf. on Lasers '85, p. 688Google Scholar
  12. 12.
    D. Braichotte, H. van den Bergh: To be publishedGoogle Scholar
  13. 13.
    O. Hunderi: Thin Solid Films57, 15 (1979)Google Scholar
  14. 14.
    H.E. Bennett, J.M. Bennett: Physics of Thin Films4, 1 (1967)Google Scholar
  15. 15.
    O.S. Heavens: Rep. Prog. Phys.12, 1 (1960)Google Scholar
  16. 16.
    D. Braichotte, H. van den Bergh: InLaser Processing and Diagnostics, Springer Ser. in Chem. Phys., Vol.39, ed. by D. Bäuerle (Springer, Berlin, Heidelberg 1984) p. 183Google Scholar
  17. 17.
    D. Braichotte, H. van den Bergh: Helv. Phys. Acta59, 1014 (1986)Google Scholar
  18. 18.
    H.H. Gilgen, T. Cacouris, P.S. Shaw, R.R. Krchnavek, R.M. Osgood Jr.: Appl. Phys. B42, 55 (1987)Google Scholar
  19. 19.
    I.P. Herman, B.M. McWilliams, F. Militsky, H.W. Chin, R.A. Hyde, L.L. Wood: In Proc, of the Material Research Society Annual Meeting in Boston, 1983,Laser Controlled Chemical Processing of Surfaces, ed. by A.W. Johnson, D.J. Ehrlich, H.R. Schlossberg (North-Holland, New York 1984) p. 29Google Scholar
  20. 20.
    Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens:Thermal Conductivity in Thermophysical Properties of Matter 12, 922 (IFI/Plenum, New York, Washington 1970)Google Scholar
  21. 21.
    The authors are grateful to D. Bäuerle and K. Piglmayer for providing a comparison between the approximate calculations of (7) and the more exact method using the Kirchhoff transform they use themselves [1]Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • D. Braichotte
    • 1
  • H. van den Bergh
    • 1
  1. 1.Ecole Polytechnique Fédérale de LausanneLaboratoire de Chimie TechniqueLausanneSwitzerland

Personalised recommendations