Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Intracellular ion activities and equilibrium potentials in motoneurones and glia cells of the frog spinal cord

  • 37 Accesses

  • 34 Citations

Abstract

Intra- and extracellular ion activities were measured with ion sensitive microelectrodes in motoneurones and glia cells of the spinal cord of the frog. These data were corrected for cross sensitivities of the ion exchangers to intracellular interfering ions, and equilibrium potentials for K+, Na+, Ca2+ and Cl (E K,E Na,E Ca andE Cl) were calculated. In motoneurones with membrane potentials exceeding −60mV the following mean equilibrium potentials were determined.

$$\begin{gathered} E_{Na} = + 29.4mV, E_K = - 87.9mV, E_{Ca} = + 52.6mV, \hfill \\ E_{Cl} = - 34.1mV \hfill \\ \end{gathered}$$

.

The corresponding values for glia cells were:

$$\begin{gathered} E_{Na} = + 40.5mV, E_K = - 84.0mV, E_{Ca} = + 35.7mV, \hfill \\ E_{Cl} = - 59.7mV \hfill \\\end{gathered}$$

.

The intracellular ionic milieu is probably disturbed by the impalement of the cells. This transiently decreases the intracellular K+ and increases intracellular Na+. These effects were estimated and their origin is discussed. The results of the experiments suggest a non-passive transmembrane distribution of K+, Na+ and Ca2+ in motoneurones and glia cells, a non-passive transmembrane distribution of Cl in motoneurones, and a passive transmembrane distribution of Cl in glia cells.

This is a preview of subscription content, log in to check access.

References

  1. Ahmed Z, Connor JA (1979) Measurement of calcium influx under voltage clamp in molluscan neurones using the metallochromic dye Arsenazo III. J Physiol (Lond) 286:61–82

  2. Allakherdov BL, Burovina IV, Chmykova NM, Shapovalov AI (1980) Electron probe X-ray microanalysis of intracellular sodium, potassium and chlorine contents in amphibian motoneurones. Neuroscience 5:2023–2031

  3. Alvarez-Leefmans FJ, Rink TJ, Tsien RY (1980) Intracellular free calcium in Helix aspersa neurones. J Physiol (Lond) 306:19 P

  4. Alvarez-Leefmans FJ, Rink TJ, Tsien RY (1981) Measurements of free Ca2+ in nerve cell bodies. In: Syková, E, Hník, P, Vyklický L (eds) Ion selective microelectrodes and their use in excitable tissues. Plenum Press. New York, pp 119–124

  5. Ammann D, Lanter F, Steiner R, Erne D, Simon W (1981) New ion selective liquid membrane microelectrodes. In: Syková E, Hník P, Vyklický L (eds) Ion selective microelectrodes and their use in excitable tissues. Plenum Press, New York, pp 13–23

  6. Baker PF, Hodkin AL, Ridgway EB (1971) Depolarization and calcium entry in squid giant axons. J Physiol (Lond) 218:709–755

  7. Baker PF, Schalaepfer WW (1978) Uptake and binding of calcium by axoplasm isolated from giant axons of Loligo and Myxicola J Physiol (Lond) 276:103–125

  8. Blinks JR, Prendergast FG, Allen DG (1975) Photoproteins as biological calcium indicators. Pharmacol Rev 27:438–472

  9. Brown H, Goldberg E (1949) Science 109, 347. In: Keynes RD, Lewis PR (eds) (1951). The sodium and potassium content of cephalopod nerve fibres. J Physiol (Lond) 114:151–182

  10. Bührle ChPh, Buchert E, Sonnhof U (1978) The action of glutamate on the membrane of motoneurones investigated by measurements of intra- and extracellular ion activities (aK+,aNa+ andaCa2+). Pflügers Arch Suppl 377:R43 169

  11. Coombs JS, Eccles JC, Fatt P (1955) The electrical properties of the motoneurone membrane. J Physiol (Lond) 130:291–325

  12. Deisz RA, Lux HD (1976) Effects of furosemide on intracellular chloride concentration in crayfish stretch receptor. Pflügers Arch 365:R32

  13. Deisz RA, Lux HD (1978) Intracellular chloride concentration and postsynaptic inhibition in crayfish stretch receptor. Arzneimittelforschung 28:870–871

  14. Di Polo R, Requena J, Brinley FJ Jr, Mullins LJ, Scarpa A, Tiffert T (1976) Ionized calcium concentrations in squid axons J Gen Physiol 67:433–467

  15. Eccles JC, Eccles RM, Ito M (1964a) Effects of intracellular potassium and sodium injections on the inhibitory postsynaptic potentials. Proc R Soc 160:181–196

  16. Eccles JC, Eccles RM, Ito M (1964b) Effects produced on inhibitory postsynaptic potentials by the coupled injections of cations and anions into motoneurones. Proc R Soc 160:197–210

  17. Ecker A, Wiedersheim R, Gaupp E (1899) Anatomie des Forsches 2. Auflage Vieweg, Braunschweig

  18. Eckert R, Lux HD (1975) A non-inactivating inward current recorded during small depolarizing voltage steps in snail pacemaker neurons. Brain Res 83:486

  19. Eckert R, Lux HD (1976) A voltage-sensitive persistent calcium conductance in neuronal somata of Helix. J Physiol (Lond) 254: 129–151

  20. Eckert R, Tillotson D, Ridgway E (1977) voltage dependent facilitation of Ca entry in voltage-clamped aequorin-injected molluscan neurones. Proc Natl Acad Sci USA 74:1748–1752

  21. Gorman ALF, Thomas MV (1978) Changes in the intracellular concentration of free calcium ions in a pace-maker neurone, measured with the metallochromic indicator dye arsenzo III. J Physiol (Lond) 275:357–376

  22. Hinke JAM (1961) The measurement of sodium and potassium activities in the squid axon by means of cationselective glass microelectrodes. J Physiol (Lond) 156:314–335

  23. Hodgkin AL, Keynes RD (1953) The mobility and diffusion coefficient of potassium in giant axons from Sepia. J Physiol (Lond) 119:513–528

  24. Hofmeier G, Lux HD (1981) The time courses of intracellular free calcium and related electrical effects after injection of CaCl2 into neurones of the snail, Helix pomatia. Pflügers Arch 391:242–251

  25. International union of pure and applied chemistry (1976) Recommendations for nomenclature of ion selective electrodes. Pure Appl Chem 48:127

  26. Keynes RD, Lewis PR (1951) The sodium and potassium content of cephalopod nerve fibres. J Physiol (Lond) 114:151–182

  27. Kříž N, Syková E (1981) Sensitivity of K+-selective microelectrodes to pH and some biologically active substances. In: Syková E, Hník P, Vyklický L (eds) Ion selective microelectrodes and their use in excitable tissues. Plenum Press, New York, pp 25–39

  28. Kushmerick MJ, Podolsky RJ (1969) Ionic mobility in muscle cells. Science 166:1297–1298

  29. Lee CO (1981) Determination of selectivity coefficients of ion-selective microelectrodes. In: Syková E, Hník P, Vyklický L (eds) Ion selective microelectrodes and their use in excitable tissues. Plenum Press. New York, pp 47–52

  30. Lee CO, Uhm DY (1981) Characteristics of Ca2+ selective microelectrodes and their application to cardiac muscle cells. In: Syková E, Hník P, Vyklický L (eds) Ion selective microelectrodes and their use in exitable tissues. Plenum Press, New York, pp 317–321

  31. Llinás R, Baker R, Precht W (1974) Blockage of inhibition by ammonium acetate action on chloride pump in cat trochlear motoneurones. J Neurophysiol 37:522–533

  32. Lothman EW, Somjen GG (1975) Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord. J Physiol (Lond) 252:115–136

  33. Lux HD (1974) Fast recording ion specific microelectrodes: Their use in pharmacological studies in the CNS. Neuropharmacology 13: 509–517

  34. Lux HD, Neher E (1973) The equilibration time course of (K+)o in cat cortex. Exp Brain Res 17:190–205

  35. Lux HD, Hofmeier G, Aldenhoff JB (1981) Intracellular free calcium affects electric membrane properties. A study with calcium-selective microelectrodes and with Arsenazo III in Helix neurones. In: Syková E, Hník P, Vyklický L (eds) Ion selective microelectrodes and their use in excitable tissues. Plenum Press, New York, pp 99–117

  36. Magherini PC, Precht W, Schwindt PC (1976) Electrical properties of frog motoneurons in the in situ spinal cord. J Neurophysiol 39:459–473

  37. Marban E, Rink TJ, Tsien RW, Tsien RY (1980) Free calcium in heart muscle at rest and during contraction measured with Ca2+-sensitive microelectrodes. Nature 286:845–850

  38. O'Doherty JO, Stark RJ (1981) Measurement of intracellular Ca2+ activities. In: Syková E, Hník P, Vyklický L (eds) Ion selective microelectrodes and their use in escitable tissues. Plenum Press, New York, pp 91–94

  39. Oehme M, Kessler M, Simon W (1976) Neutral carrier Ca2+-microelectrode. Chimia 30:204–206

  40. Ridgway EB, Ashley CC (1967) Calcium transients in single muscle fibres. Biochem Biophys Res Commun 29:229–234

  41. Scarpa A, Tiffert T, Brinley FJ (1977) In vivo measurements of ionized Mg2+ and Ca2+ in single cells. In: Semenza G, Carafoli E (eds) Biochemistry of membrane transport. Springer, Berlin Heidelberg New York, pp 552–566

  42. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properites of aequorin, a bioluminescent protein from the luminous hydromedusan Aequorea. J Cell Comp Physiol 59:223–239

  43. smith SJ, Zucker RS (1980) Aequorin response facilitation and intracellular calcium accumulation in molluscan neurones. J Physiol (Lond) 300:167–196

  44. Sonnhof U, Bührle ChPh (1981) The ionic basis of the IPSP in spinal motoneurones of the frog. In: Syková E Hník P, Vyklický L (eds) Ion selective microelectrodes and their use in excitable tissues. Plenum Press, New York, pp 191–194

  45. Sonnhof U, Förderer R, Schneider W, Kettenmann H (1982) Cell puncturing with a step motor driven manipulator with simultaneous measurement of displacement. Pflügers Arch 392:295–300

  46. Sonnhof U, Grafe P, Krumnikl J, Linder M, Schidler L (1975) Inhibitory postsynaptic actions of taurine, GABA and other aminoacids on motoneurones of the isolated frog spinal cord. Brain Res 100:327–341

  47. Steinbach HB, Spiegelman S (1943) The sodium and potassium balance in squid nerve axoplasm. J Cell Comp Physiol 22:187–196

  48. Steiner RA, Oehme M, Ammann D, Simon W (1979) Neutral carrier sodium ion-selective microelectrode for intracellular studies. Analyt Chem 51:351

  49. Stinnakre J, Tauc L (1973) Calcium influx in active Aplysia neurones detected by injected aequorin. Nature New Biol 242:113–115

  50. Sugaya E, Onozuka M (1978) Unequal distribution of calcium and magnesium of snail neuron. Experientia 34:1299–1300

  51. Tobias CA, Dunn RW (1949) Science 109, 109. In: Keynes RD, Lewis PR (1951). The sodium and potassium content of cephalopod nerve fibres. J Physiol (Lond) 114:151–182

  52. Vyskočil F, Kříž N, Bureš J (1972) Potassium selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39:255–259

  53. Walker JL (1971) Ion specific ion exchanger microelectrodes. Analyt Chem 43:89–92A

Download references

Author information

Correspondence to U. Sonnhof.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bührle, C.P., Sonnhof, U. Intracellular ion activities and equilibrium potentials in motoneurones and glia cells of the frog spinal cord. Pflugers Arch. 396, 144–153 (1983). https://doi.org/10.1007/BF00615519

Download citation

Key words

  • Frog spinal cord
  • Motoneurones
  • Glia cells
  • Ion sensitive microelectrodes
  • Extra- and intracellular activities of K+, Na+ and Cl