Journal of Applied Electrochemistry

, Volume 12, Issue 5, pp 545–548 | Cite as

Decomposition voltage for the electrolysis of alumina at low temperatures

  • R. C. Dorward


The apparent decomposition voltage for the electrolysis of alumina in an equimolar Na3AlF6-Li3AlF6 electrolyte was measured over a temperature range of 800 to 1000° C by the extrapolation of voltagecurrent plots to zero current. Temperature coefficients of −1.9 and −2.4 mV° C−1 were determined for conditions of variable alumina activity (constant concentration) and unit activity (saturated), respectively. The overvoltage contribution to the temperature dependency was estimated to be about −1.6mV° C−1 (versus a −0.6 mV° C−1 dependency for the reversible decomposition voltage). Reduced alumina solubility at low temperatures also appeared to increase the overvoltage, but was of secondary importance.


Alumina Physical Chemistry Temperature Coefficient Unit Activity Constant Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. M. Hall, US Patent 400,665 (1889).Google Scholar
  2. [2]
    W. C. Sleppy and C. N. Cochran, in ‘Light Metals 1979’, Vol. 1 (edited by W. S. Peterson) AIME, New York (1979) p. 385.Google Scholar
  3. [3]
    K. Grjotheim and B. J. Welch, ‘Aluminum Smelter Technology’, Aluminium-Verlag GmBH, Dusseldorf (1980) p. 90.Google Scholar
  4. [4]
    M. Rolin, ‘Le Procede Heroult de L'Electrolyse’, Institute National des Sciences Appliques des Lyon, Vulleurbanne, France (1977).Google Scholar
  5. [5]
    S. Glasstone, ‘An Introduction to Electrochemistry’, D. Van. Nostrand, Princeton (1942) p. 466.Google Scholar
  6. [6]
    N. E. Richards and B. J. Welch, ‘Proceedings of the 1st Australian Conference on Electrochemistry’, (edited by J. A. Friend and F. Gutmann) Pergamon Press, Oxford (1963) p. 901.Google Scholar
  7. [7]
    N. E. Richards and B. J. Welch, in ‘Extractive Metallurgy of Aluminum’, Vol. 2 (edited by G. Gerard) Interscience Publishers, New York (1963) p. 15.Google Scholar
  8. [8]
    W. E. Haupin,J. Electrochem. Soc. 103 (1956) 174.Google Scholar
  9. [9]
    N. de K, Thompson and R. G. Seyl,Trans. Electrochem. Soc. 64 (1933) 321.Google Scholar
  10. [10]
    J. W. Cuthbertson and J. Waddington,Trans. Farad. Soc. 32 (1936) 745.Google Scholar
  11. [11]
    P. Drossbach, Z.Elektrochim. 42 (1936) 65.Google Scholar
  12. [12]
    I. P. Tverdovski and V. S. Molchanov,Zh. Prikl. Khim. 10 (1937) 1011.Google Scholar
  13. [13]
    G. Garton and B. M. Wanklyn,J. Amer. Ceram. Soc. 50 (1967) 395.Google Scholar
  14. [14]
    K. Mataisovksy, M. Malinovsky and V. Danek,Electrochim. Acta 15 (1970) 25.Google Scholar
  15. [15]
    M. Rolin and R. Muhlethaler,Bull. Soc. Chim. France (1964) 2593.Google Scholar
  16. [16]
    V. P. Mashovets and V. I. Petrov,Zh. Prikl. Khim. 30 (1957) 1695.Google Scholar
  17. [17]
    J. Thonstad,Electrochim. Acta 15 (1970) 1569.Google Scholar
  18. [18]
    Yu. V. Borisoglebskii, M. W. Vetyukov and V. B. Vinokurov,Tsvet. Met. 44 (1971) 37.Google Scholar
  19. [19]
    R. C. Dorward and J. R. Payne, ‘Energy Savings Through the Use of an Improved Aluminum Reduction Cell Cathode’, Dept. of Energy Contract DE-AC03-76CS40215.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1982

Authors and Affiliations

  • R. C. Dorward
    • 1
  1. 1.Center for TechnologyKaiser Aluminum & Chemical CorporationPleasantonUSA

Personalised recommendations