Applied Physics A

, Volume 37, Issue 4, pp 191–203 | Cite as

Lithium niobate: Summary of physical properties and crystal structure

  • R. S. Weis
  • T. K. Gaylord
Invited Paper


Ferroelectric lithium niobate (LiNbO3) is widely used in integrated and guided-wave optics because of its favorable optical, piezoelectric, electro-optic, elastic, photoelastic, and photorefractive properties. However, detailed summaries of its pertinent physical properties and crystal structure are not readily available. In this tutorial paper, the important tensor physical properties and their mathematical descriptions are compiled and presented. The essential features of the structure of lithium niobate, including its hexagonal and rhombohedral unit cells, are illustrated and the principal (Cartesian) axes used in the description of the anisotropic properties are specified relative to the crystal structure. Errors in property coefficient values and structure information that have been propagated in the literature are corrected.


78.20.-e 42.70.Fh 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.T. Matthias, J.P. Remeika:Phys. Rev.76, 1886–1887 (1949)Google Scholar
  2. 2.
    K. Nassau, H.J. Levinstein, G.M. Loiacono: J. Chem. Phys. Solids27, 983–988 (1966)Google Scholar
  3. 3.
    K. Nassau, H.J. Levinstein, G.M. Loiacono: J. Chem. Phys. Solids27, 989–996 (1966)Google Scholar
  4. 4.
    S.C. Abrahams, J.M. Reddy, J.L. Bernstein: J. Chem. Phys. Solids27, 997–1012 (1966)Google Scholar
  5. 5.
    S.C. Abrahams, W.C. Hamilton, J.M. Reddy: J. Chem. Phys. Solids27, 1013–1018 (1966)Google Scholar
  6. 6.
    S.C. Abrahams, W.C. Hamilton, J.M. Reddy: J. Chem. Phys. Solids27, 1019–1026 (1966)Google Scholar
  7. 7.
    S.C. Abrahams, E. Buehler, W.C. Hamilton, S.J. Laplaca: J. Chem. Phys. Solids34, 521–532 (1973)Google Scholar
  8. 8.
    B.K. Vainshtein:Modern Crystallography I, Springer Ser. Solid-State Sci.15 (Springer, Berlin, Heidelberg 1981)Google Scholar
  9. 9.
    Proc. IRE37, 1378–1395 (1949)Google Scholar
  10. 10.
    G.D. Boyd, R.C. Miller, K. Nassau, W.L. Bond, A. Savage: Appl. Phys. Lett.5, 234–236 (1964)Google Scholar
  11. 11.
    I.P. Kaminow, E.H. Turner, R.L. Barns, J.L. Bernstein: J. Appl. Phys.51, 4379–4384 (1980)Google Scholar
  12. 12.
    B.D. Cullity:Elements of X-ray Diffraction (Addison-Wesley, Reading, MA 1978) pp. 504–505Google Scholar
  13. 13.
    A. Rauber (E. Kaldis, ed.):Current Topics Mat. Sci. 1, 481–601 (North-Holland, Amsterdam 1978)Google Scholar
  14. 14.
    P. Lerner, C. Legras, J.P. Duman: J. Cryst. Growth3/4, 231–235 (1968)Google Scholar
  15. 15.
    J.R. Carruthers, G.E. Peterson, M. Grasso, P.M. Bridenbaugh: J. Appl. Phys.42, 1846–1851 (1971)Google Scholar
  16. 16.
    J.G. Bergman, A. Ashkin, A.A. Ballman, J.M. Dziedzic, H. J. Levinstein, R.G. Smith: Appl. Phys. Lett.12, 92–94 (1968)Google Scholar
  17. 17.
    H.D. Megaw: Acta Cryst. A24, 589–604 (1968)Google Scholar
  18. 18.
    K. Sugii, H. Koizumi, S. Miyazawa, S. Kondo: J. Cryst. Growth33, 199–202 (1976)Google Scholar
  19. 19.
    Y.S. Kim, R.T. Smith: J. Appl. Phys.40, 4637–4641 (1969)Google Scholar
  20. 20.
    J.S. Browder, S.S. Ballard: Appl. Opt.16, 3214–3217 (1977)Google Scholar
  21. 21.
    e. g., Crystal Technology, Inc., 2510 Old Middlefield Way, Mountain View, CA 94040, USAGoogle Scholar
  22. 22.
    A. Savage: J. Appl. Phys.37, 3071–3072 (1966)Google Scholar
  23. 23.
    A.W. Warner, M. Onoe, G.A. Coquin: J. Acoust. Soc. Am.42, 1223–1231 (1967)Google Scholar
  24. 24.
    R.T. Smith, F.S. Welsh: J. Appl. Phys.42, 2219–2230 (1971)Google Scholar
  25. 25.
    T. Yamada, N. Niizeki, H. Toyoda: Jpn. J. Appl. Phys.6, 151–155 (1967)Google Scholar
  26. 26.
    J.R. Teague, R.R. Rice, R. Gerson: J. Appl. Phys.46, 2864–2866 (1975)Google Scholar
  27. 27.
    Y. Nakagawa, K. Yamanouchi, K. Shibayama:J. Appl. Phys.44, 3969–3974 (1973)Google Scholar
  28. 28.
    E.H. Turner, F.R. Nash, P.M. Bridenbaugh: J. Appl. Phys.41, 5278–5281 (1970)Google Scholar
  29. 29.
    D.F. Nelson, R.M. Mikulyak: J. Appl. Phys.45, 3688–3689 (1974)Google Scholar
  30. 30.
    G.D. Boyd, W.L. Bond, H.L. Carter: J. Appl. Phys.38, 1941–1943 (1967)Google Scholar
  31. 31.
    D.S. Smith, H.D. Riccius, R.P. Edwin: Opt. Commun.17, 332–335 (1976) Also Erratum20, 188 (1977)Google Scholar
  32. 32.
    G.J. Edwards, M. Lawrence: Opt. Quantum Electron.16, 373–374 (1984)Google Scholar
  33. 33.
    J.F. Nyc:Physical Properties of Crystals (Oxford U. Press, Oxford 1957) p. 115Google Scholar
  34. 34.
    T. Yamada (K.-H. Hellwege, ed.):Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Vol. 16a (Springer, Berlin, Heidelberg 1981) pp. 149–156 and pp. 489–499Google Scholar
  35. 35.
    R.A. Graham: Ferroelectr.10, 65–69 (1976)Google Scholar
  36. 36.
    R.A. Graham: J. Appl. Phys.48, 2153–2163 (1977)Google Scholar
  37. 37.
    J.D. Zook, D. Chen, G.N. Otto: Appl. Phys. Lett.11, 159–161 (1967)Google Scholar
  38. 38.
    M. DiDomenico, Jr., S.H. Wemple: J. Appl. Phys.40, 720–752 (1969)Google Scholar
  39. 39.
    A.A. Berezhnoi: Opt. Spectrosc.49, 178–181 (1980)Google Scholar
  40. 40.
    P.V. Lenzo, E.G. Spencer, K. Nassau: J. Opt. Soc. Am.56, 633–635 (1966)Google Scholar
  41. 41.
    E. Bernal, G.D. Chen, T.C. Lee: Phys. Lett.21, 259–260 (1966)Google Scholar
  42. 42.
    P. H. Smakula, P.C. Claspy: Trans. Metall. Soc. AIME239, 421–24 (1967)Google Scholar
  43. 43.
    K. Onuki, N. Uchida, T. Saku: J. Opt. Soc. Am.62, 1030–1032 (1972)Google Scholar
  44. 44.
    E.H. Turner cited in [11]Google Scholar
  45. 45.
    E.H. Turner: Appl. Phys. Lett.8, 303–304 (1966)Google Scholar
  46. 46.
    E.H. Turner: J. Opt. Soc. Am.56, 1426 (1966)Google Scholar
  47. 47.
    A.A. Blistanov, N.V. Perelomova, L.E. Chirkov, V.A. Shkitin: Sov. Phys.-Cryst.24, 287–291 (1979)Google Scholar
  48. 48.
    A.R. Hutson, D.L. White: J. Appl. Phys.33, 40–47 (1962)Google Scholar
  49. 49.
    J.J. Kyame: J. Acoust. Soc. Am.21, 159–167 (1949)Google Scholar
  50. 50.
    D.F. Nelson, M. Lax: Phys. Rev. B3, 2778–2794 (1971) Also Erratum Phys. Rev. B4, 3779 (1971)Google Scholar
  51. 51.
    D.F. Nelson, M. Lax: Phys. Rev. Lett.24, 379–380 (1970)Google Scholar
  52. 52.
    L.P. Avakyants, D.F. Kiselev, N.N. Shchitkov: Sov. Phys. Solid State18, 899–901 (1976)Google Scholar
  53. 53.
    L. Marlescu, G. Hauret: Compt. Rend. Acad. Sci. (B)276, 555–558 (1973)Google Scholar
  54. 54.
    R.W. Dixon: J. Appl. Phys.38, 5149–5153 (1967)Google Scholar
  55. 55.
    V.V. Lemanov, O.V. Shakin, G.A. Smolenskii: Sov. Phys. -Solid State13, 426–28 (1971)Google Scholar
  56. 56.
    R.J. O'Brien, G.J. Rosasco, A. Weber: J. Opt. Soc. Am.60, 716 (1970)Google Scholar
  57. 57.
    V.V. Kludzin: Sov. Phys.-Solid State13, 540–541 (1971)Google Scholar
  58. 58.
    G.A. Coquin cited in D.A. Pinnow:Handbook of Lasers with Selected Data on Optical Technology, ed. by R.J. Pressley, (Chemical Rubber, Cleveland 1971) p. 482Google Scholar
  59. 59.
    A.A. Oliner (ed.):Acoustic Surface Waves, Topics Appl. Phys.24 (Springer, Berlin, Heidelberg1978) Chap. 6Google Scholar
  60. 60.
    I.C. Chang: IEEE Trans. SU-23, 2–22 (1976)Google Scholar
  61. 61.
    E.I. Gordon: IEEE J. QE-2, 104–105 (1966)Google Scholar
  62. 62.
    T.M. Smith, A. Korpel: IEEE J. QE-1, 283–284 (1965)Google Scholar
  63. 63.
    A.M. Glass, D. von der Linde, T.J. Negran: Appl. Phys. Lett.25, 233–235 (1974)Google Scholar
  64. 64.
    H.M. Smith (ed.):Holographic Recording Materials, Topics Appl. Phys.20 (Springer, Berlin, Heidelberg 1977) Chap. 4Google Scholar
  65. 65.
    V.M. Fridkin, R.G. Magomadov: JETP Lett.30, 686–688 (1979)Google Scholar
  66. 66.
    V.M. Fridkin: Ferroelectr.53, 169–187 (1984)Google Scholar
  67. 67.
    H.G. Festl, P. Hertel, E. Kratzig, R. von Baltz: Phys. Stat. Sol. B113, 157–164 (1982)Google Scholar
  68. 68.
    R. Grousson, M. Henry, S. Mallick, S.L. Xu: J. Appl. Phys.54, 3012–3016 (1983)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • R. S. Weis
    • 1
  • T. K. Gaylord
    • 1
  1. 1.School of Electrical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations