Advertisement

Oxidation of Metals

, Volume 5, Issue 1, pp 11–47 | Cite as

The high-temperature oxidation of nickel-20 wt. % chromium alloys containing dispersed oxide phases

  • J. Stringer
  • B. A. Wilcox
  • R. I. Jaffee
Article

Abstract

Alloys of Ni-20 wt. % Cr containing 3 vol. % of a dispersed oxide phase have been prepared by a mechanical alloying method and oxidized in oxygen at 100 Torr in the temperature range of 900 to 1200°C. It appears that the dispersed oxide has four distinct effects on the oxidation: (1) the selective oxidation of chromium to form a continuous protective Cr2O3scale is promoted; (2) the rate of growth of Cr2O3is reduced compared with particle-free alloys; (3) the adhesion of the Cr2O3is greatly improved; and (4)the scale-forming reaction appears to be at the scale-metal interface in alloys containing a dispersion, but at the scale-oxygen interface in alloys without a dispersion. It appears that the nature of the dispersed oxide is not important, since very similar effects can be obtained with ThO2,Y2O3,and CeO2dispersions. It is demonstrated that a logical deduction from this evidence is that the growth of Cr2O3scales on dispersion-free systems must involve short-circuit diffusion of chromium through the scale, and that it seems probable that an effect of the dispersion must be to retard or eliminate this short-circuit process. It is suggested that the oxide particles act as nucleation centers for the oxide, thus reducing the oxide grain size; and it is shown that this simple hypothesis is sufficient to explain a number of the experimental observations.

Keywords

Chromium Y2O3 Mechanical Alloy Oxide Particle Selective Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Kubaschewski and B. E. Hopkins,Oxidation of Metals and Alloys (Butterworths, London, 1962), 2nd edition.Google Scholar
  2. 2.
    D. V. Ignatov and R. D. Shamgunova,The Mechanism of the Oxidation of Nickel and Chromium Alloys (Tzd. Akad. Nauk SSSR, Moscow, 1960).Google Scholar
  3. 3.
    G. C. Wood and T. Hodgkiess,J. Electrochem. Soc. 113, 319 (1966).Google Scholar
  4. 4.
    C. S. Giggins and F. S. Pettit,Trans. AIME 245, 2495 (1969).Google Scholar
  5. 5.
    See, for example J. M. Francis and W. H. Whitlow,Corrosion Sci. 5, 701 (1965).Google Scholar
  6. 6.
    G. R. Wallwork and A. Z. Hed,Oxidation of Metals 3, 229 (1961).Google Scholar
  7. 7.
    C. E. Lowell, D. L. Deadmore, S. J. Grisaffe, and I. L. Drell,NASA Technical Note TDD-6290 (April 1971).Google Scholar
  8. 8.
    C. S. Giggins and F. S. Pettit,Met. Trans. 2, 1071 (1971).Google Scholar
  9. 9.
    C. E. Lowell,NASA Technical Memorandum TMX-67867 (June 1971).Google Scholar
  10. 10.
    H. H. Davis, H. C. Graham, and I. A. Kvernes,Oxidation of Metals 3(5), 431 (1971).Google Scholar
  11. 11.
    M. J. Fleetwood,J. Inst. Metals 94, 218 (1966).Google Scholar
  12. 12.
    M. S. Seltzer and B. A. Wilcox, submitted toMet. Trans. Google Scholar
  13. 13.
    J. S. Benjamin,Met. Trans. 1, 2943 (1970).Google Scholar
  14. 14.
    W. C. Hagel,Trans. ASM 56, 583 (1963).Google Scholar
  15. 15.
    M. S. Seltzer, private communication.Google Scholar
  16. 16.
    H. C. Graham and H. H. Davis,J. Am. Ceram. Soc. 54, 89 (1971).Google Scholar
  17. 17.
    H. Lewis,Proc. J. Intern. d'Etude sur l'Ox. des Met. (SERAI, Brussels, October 1965).Google Scholar
  18. 18.
    C. S. Tedmon, Jr.,J. Electrochem. Soc. 113, 766 (1966).Google Scholar
  19. 19.
    C. E. Lowell, private communication.Google Scholar
  20. 20.
    J. Stringer,Oxidation of Metals 5(1), 49 (1972).Google Scholar
  21. 21.
    G. C. Wood,Werkstoffe Korrosion 22, 491 (1971).Google Scholar
  22. 22.
    J. F. Laurent and J. Benard,Compt. Rend. 241, 1204 (1955);Phys. Chem. Solids 7, 218 (1958).Google Scholar
  23. 23.
    Y. Oishi and W. D. Kingery,J. Chem. Phys. 33, 480 (1960).Google Scholar
  24. 24.
    R. L. Tallman and E. A. Gulbransen,Nature 218, 1046 (1968).Google Scholar
  25. 25.
    J. Stringer,Met. Rev. 11, 113 (1966).Google Scholar
  26. 26.
    T. G. Kravchenko and N. P. Zhuk,Protection Metals 5, 549 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1972

Authors and Affiliations

  • J. Stringer
    • 1
  • B. A. Wilcox
    • 2
  • R. I. Jaffee
    • 2
  1. 1.Department of Metallurgy and Materials ScienceUniversity of LiverpoolEngland
  2. 2.Battelle Columbus LaboratoriesMetal Science GroupColumbus

Personalised recommendations